CERN Courier – digital edition

Welcome to the digital edition of the October 2018 issue of CERN Courier.

Of all the particle colliders that have been built over the past half-century or so, one type stands out for its rarity: the electron–hadron collider. The only machine so far in this class is the 6.3 km-circumference electron–proton collider HERA, which operated at DESY in Germany between 1992 and 2007. Together with its four large detectors (H1, ZEUS, HERMES and HERA-B), HERA transformed our view of proton structure and led to major insights into other areas of quantum chromodynamics. This summer, the US Academy of Sciences positively endorsed a proposal for a high-energy, high-luminosity electron–ion collider that would go even further than HERA in precisely mapping the internal structure of nuclear matter and determining how nucleon properties emerge from quark and gluon interactions. Two pre-conceptual designs have evolved at Brookhaven National Laboratory and Jefferson Laboratory, setting in motion the process towards approval and eventual construction. Other topics featured in this issue include: the African Institute for Mathematical Sciences; a background-free dark-matter experiment called DarkSide; proton-driven plasma-wakefield acceleration at CERN; Hyper-Kamiokande’s green light for construction; and the 50th anniversary of the European Physical Society, whose role in bridging political divides is more important than ever.

To sign up to the new-issue alert, please visit: cerncourier.com/cws/sign-up.

To subscribe to the magazine, the e-mail new-issue alert, please visit: cerncourier.com/cws/how-to-subscribe.
Gamma Stream series
Performing Gamma and Neutron measurements
with one electronic!

Digital Tube Base Multi Channel Analyser

- Compact, stand-alone, tube base MCA including high voltage power supply preamplifier and CPU
- Specialized for NaI(Tl), Labr3(Ce), and CeBr3 with standard 14-pin and 10-8 stages PMTs
- Multiple acquisition modes: PHA, Time stamped list mode, MCS**, SCA*** and signal inspector
- Gain stabilizer based on calibration with natural or reference radioactivity
- Software Development Kit for custom user application
- Built-in rechargeable battery (up to 6h of continuous acquisition)
- 32 Gb internal memory for Data and Spectrum storage
- Embedded GPS for data geolocation
- ARM based CPU for unattended operations
- GammaTOUCH App for Android
- Wireless and wired connectivity via USB, Ethernet, Bluetooth and WiFi

(*) Saint Galoain product
(**) Coming Soon
Preserving European unity in physics

As the EPS turns 50, building scientific bridges across political divides remains as vital as ever.

By Rüdiger Voss

The year 1968 marked a turning point in the history of post-war Europe that remains engraved in our collective memory. Global politics were marked by massive student unrest, the Cold War and East–West confrontation. On 21 August the Soviet Union and other Warsaw Pact states invaded Czechoslovakia to crush the movement of liberalisation, democratisation and civil rights, which had become known as the Prague Spring.

Against this backdrop, it seems a miracle that the European Physical Society (EPS) was founded in Geneva on 26 September, with representatives of the Czechoslovak Physical Society and the USSR Academy of Sciences sitting at the same table. The EPS was probably the first learned society in Europe involving physicists from both sides of the Iron Curtain. Ever since, building scientific bridges across political divides has been core to the society’s mission.

The EPS was founded in Geneva not by accident. Whereas CERN did not play a formal role, the CERN model of European cooperation made a substantial impact on the genesis of the new society. CERN was at that time principally an organisation of Western European states, but it had started early to develop scientific collaboration with the Soviet Union and other Eastern countries, notably through the Joint Institute for Nuclear Research in Dubna. Leading CERN physicists — including Director-General Bernard Gregory — were instrumental in setting up the new society; Gilberto Bernardini, who had been CERN’s first director of research in 1960–1961 and was a strong advocate of international collaboration in science, became the first EPS president. From the 20 national physical societies and similar organisations that participated in the 1968 foundation, this has grown to 42, covering almost all of Europe plus Israel, and representing more than 130,000 members. In addition, there are about 42 associate members – mostly major research institutions including CERN – and, last but not least, around 3500 individual members.

In the heart of Europe are threatened with closure as self-evident. Today, prestigious universities in the UK and in other countries physicists are jailed for claiming the right to freely exercise their academic profession. These concerns are not unique to physics and must be addressed by the scientific community at large.

The EPS, representing a science with a long tradition and highly developed culture of international collaboration, has a special responsibility to uphold these values.

Against this background, the EPS is undertaking efforts to make the voice of the physics community more clearly heard in European science-policy making, principally through a point of presence in Brussels to facilitate communication with the European Commission and with partner organisations defending similar interests. In an environment where funding opportunities are increasingly organised around societal rather than scientific challenges, the EPS must advocate a healthy and sustained balance between basic and applied research.

Horizon Europe must not only provide fair access to funds, research opportunities and infrastructure for researchers from EU countries, but should remain equally open to participation from third countries, following the example of the successful association of countries like Norway and Switzerland with Horizon 2020. Building scientific bridges across political divides remains as vital as ever, in the best interest of a strong cohesion of the European physics community.
In 1 design, both electrothermal effects and structural deformation are at play.

Microwave transmitters rely on filters to maintain a desired frequency output, but thermal drift can affect their operation. In order to optimize the design of these components, engineers need to predict their performance under real-world conditions. Multiphysics modeling can be used to evaluate the electrothermal and structural effects of microwave filters — simultaneously.

The COMSOL Multiphysics® software is used for simulating designs, devices, and processes in all fields of engineering, manufacturing, and scientific research. See how you can apply it to microwave designs.

www.comsol.com/microwave-filters

The AWAKE experiment at CERN has passed an important milestone towards compact, high-energy accelerators for applications in future high-energy physics experiments. Reporting in *Nature* on 29 August, the 18 institute-strong international collaboration has for the first time demonstrated the acceleration of electrons in a plasma wakefield generated by a proton beam. The AWAKE team injected electrons into plasma at an energy of around 19 MeV and, after travelling a distance of 10 m, the electrons emerged with an energy of about 2 GeV — representing an average acceleration gradient of around 200 MV/m. For comparison, radio-frequency (RF) cavities in high-energy linear accelerators used for X-ray free-electron lasers achieve typical gradients of a few tens of MV/m.

Plasma-wakefield acceleration still has far to go before it can rival the performance of conventional RF technology, however. First proposed in the late 1970s, the technique accelerates charged particles by forcing them to “surf” atop a longitudinal plasma wave that contains regions of positive and negative charges. Two beams are required: a “witness” beam, which is to be accelerated, and a “drive” beam that generates the wakefield. Initial experiments took place with laser and electron drive beams at SLAC and elsewhere in the 1990s, and the advent of high-power lasers as wakefield drivers led to increased activity. Such technologies are now capable of bringing electrons to energies of a few GeV over a distance of a few centimetres.

AWAKE (the Advanced Wakefield Experiment) is a proof-of-principle R&D project that is the first to use protons for the drive beam. Since protons penetrate deeper into the plasma than electrons and lasers, thereby accelerating witness beams for a greater distance, they potentially can accelerate electrons to much higher energies in a single plasma stage. The experiment is driven by a bunch of 400 GeV protons from the Super Proton Synchrotron, which is injected into a plasma cell containing rubidium gas at a temperature of around 200°C. An accompanying laser pulse is used to ionise the rubidium gas and transform it into a plasma. As the proton bunch travels through the plasma, it splits into a series of smaller bunches via a process called self-modulation, generating a strong wakefield as they move. A bunch of witness electrons is then injected at an angle into this oscillating plasma at relatively low energies and rides the plasma wave to get accelerated. At the other end of the plasma, a dipole magnet bends the incoming electrons onto a scintillator to allow the energy of the outgoing particles to be measured (see figure).

AWAKE has made rapid progress since its inception in 2013. Following the installation of the plasma cell in early 2016, in the tunnel formerly used by part of the CNGS facility at CERN, a proton-driven wakefield in a plasma was observed for the first time by the end of the year (*CERN Courier* January/February 2017 p6). The electron source, electron beam line and electron spectrometer were installed during 2017, completing the preparatory phase beginning in 2018, and the first electron acceleration was recorded early in the morning of 26 May.

So far, the AWAKE demonstration involves low-intensity electron bunches; the next steps include plans to create an electron beam at high energy with sufficient quality to be useful for applications, although tests will pause at the end of the year when the CERN accelerator complex shuts down for two years for upgrades and maintenance. A first application of AWAKE is to deliver accelerated electrons to an experiment and extending the project with a fully-funded physics programme of its own. For eventual collider experiments, another hurdle is to be able to accelerate positrons. In the longer term, a global effort is under way to develop wakefield-acceleration techniques for a multi-TeV linear collider (*CERN Courier* December 2017 p31).

Although still at an early stage of development, the use of plasma wakefields could drastically reduce the size and therefore cost of accelerators. Edda Gschwendner, technical coordinator and CERN project leader for AWAKE, says that the ultimate aim is to attain an average acceleration gradient of around 1 GeV/m so that electrons can be accelerated to the TeV scale in a single stage. “We are looking forward to obtaining more results from our experiment to demonstrate the scope of plasma wakefields as the basis for future particle accelerators.”

Further reading

The ALPHA experiment at CERN’s Antiproton Decelerator (AD) has made yet another seminal measurement of the properties of antihydrogen. Following its determination last year of both the ground-state hyperfine and the 1S–2S transitions in antihydrogen, the latter representing the most precise measurement of antimatter ever made (CERN Courier May 2018 p7), the collaboration has reported in Nature the first measurement of the next fundamental energy level: the Lyman-alpha transition. The result demonstrates that ALPHA is quickly and steadily paving the way for precision experiments that could uncover as yet unseen differences between the behaviour of matter and antimatter (CERN Courier March 2018 p38).

The Lyman-alpha (or 1S–2P) transition is one of several in the Lyman series that were discovered in atomic hydrogen just over a century ago. It corresponds to a wavelength of 121.5 nm and is a special transition in astronomy because it allows researchers to probe the state of the intergalactic medium. Finding any slight difference between such transitions in antimatter and matter would shake one of the foundations of quantum field theory, charge–parity–time (CPT) symmetry, and perhaps cast light on the unexplained cosmic imbalance of matter and antimatter.

Finding the Lyman-alpha transition is notoriously difficult to probe – even in normal hydrogen, says ALPHA spokesperson Jeffrey Hangst. “By exploiting our ability to trap and hold large numbers of antihydrogen atoms for several hours, and using a pulsed source of Lyman-alpha laser light, we were able to observe this transition. Next up is laser cooling to about 20 mK is possible with the current ALPHA set-up, which, combined with other planned improvements, would reduce the 1S–2S transition line width (see figure) by more than an order of magnitude. At such levels of precision, says the team, antimatter spectroscopy will have an impact on the determination of fundamental constants, in addition to providing elegant tests of CPT symmetry. Laser cooling will also allow precision tests of the weak equivalence principle via antihydrogen-free-fall or antimat– interferometer experiments. “The Lyman-alpha transition is a pivotal technological step towards laser cooling of antihydrogen and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum.”

The Lyman-alpha transition is a pivotal technological step towards laser cooling of antihydrogen and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Simulations indicate that cooling to about 20 mK is possible with the current ALPHA set-up, which, combined with other planned improvements, would reduce the 1S–2S transition line width (see figure) by more than an order of magnitude. At such levels of precision, says the team, antimatter spectroscopy will have an impact on the determination of fundamental constants, in addition to providing elegant tests of CPT symmetry. Laser cooling will also allow precision tests of the weak equivalence principle via antihydrogen-free-fall or antimat–interferometer experiments.

The result agrees with the prediction for the equivalent transition hydrogen to a precision of 5 x 10^-3.

Although the precision is not as high as that achieved in hydrogen, the finding represents a pivotal technological step towards laser cooling of antihydrogen and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Simulations indicate that cooling to about 20 mK is possible with the current ALPHA set-up, which, combined with other planned improvements, would reduce the 1S–2S transition line width (see figure) by more than an order of magnitude. At such levels of precision, says the team, antimatter spectroscopy will have an impact on the determination of fundamental constants, in addition to providing elegant tests of CPT symmetry. Laser cooling will also allow precision tests of the weak equivalence principle via antihydrogen-free-fall or antimat–interferometer experiments.

The Lyman-alpha transition is not only a pivotal technological step towards laser cooling of antihydrogen and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Simulations indicate that cooling to about 20 mK is possible with the current ALPHA set-up, which, combined with other planned improvements, would reduce the 1S–2S transition line width (see figure) by more than an order of magnitude. At such levels of precision, says the team, antimatter spectroscopy will have an impact on the determination of fundamental constants, in addition to providing elegant tests of CPT symmetry. Laser cooling will also allow precision tests of the weak equivalence principle via antihydrogen-free-fall or antimat–interferometer experiments.

The result agrees with the prediction for the equivalent transition hydrogen to a precision of 5 x 10^-3.

Although the precision is not as high as that achieved in hydrogen, the finding represents a pivotal technological step towards laser cooling of antihydrogen and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Simulations indicate that cooling to about 20 mK is possible with the current ALPHA set-up, which, combined with other planned improvements, would reduce the 1S–2S transition line width (see figure) by more than an order of magnitude. At such levels of precision, says the team, antimatter spectroscopy will have an impact on the determination of fundamental constants, in addition to providing elegant tests of CPT symmetry. Laser cooling will also allow precision tests of the weak equivalence principle via antihydrogen-free-fall or antimat–interferometer experiments.

The result agrees with the prediction for the equivalent transition hydrogen to a precision of 5 x 10^-3.

Although the precision is not as high as that achieved in hydrogen, the finding represents a pivotal technological step towards laser cooling of antihydrogen and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Simulations indicate that cooling to about 20 mK is possible with the current ALPHA set-up, which, combined with other planned improvements, would reduce the 1S–2S transition line width (see figure) by more than an order of magnitude. At such levels of precision, says the team, antimatter spectroscopy will have an impact on the determination of fundamental constants, in addition to providing elegant tests of CPT symmetry. Laser cooling will also allow precision tests of the weak equivalence principle via antihydrogen-free-fall or antimat–interferometer experiments.

The result agrees with the prediction for the equivalent transition hydrogen to a precision of 5 x 10^-3.

Although the precision is not as high as that achieved in hydrogen, the finding represents a pivotal technological step towards laser cooling of antihydrogen and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Simulations indicate that cooling to about 20 mK is possible with the current ALPHA set-up, which, combined with other planned improvements, would reduce the 1S–2S transition line width (see figure) by more than an order of magnitude. At such levels of precision, says the team, antimatter spectroscopy will have an impact on the determination of fundamental constants, in addition to providing elegant tests of CPT symmetry. Laser cooling will also allow precision tests of the weak equivalence principle via antihydrogen-free-fall or antimat–interferometer experiments.

The result agrees with the prediction for the equivalent transition hydrogen to a precision of 5 x 10^-3.

Although the precision is not as high as that achieved in hydrogen, the finding represents a pivotal technological step towards laser cooling of antihydrogen and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Simulations indicate that cooling to about 20 mK is possible with the current ALPHA set-up, which, combined with other planned improvements, would reduce the 1S–2S transition line width (see figure) by more than an order of magnitude. At such levels of precision, says the team, antimatter spectroscopy will have an impact on the determination of fundamental constants, in addition to providing elegant tests of CPT symmetry. Laser cooling will also allow precision tests of the weak equivalence principle via antihydrogen-free-fall or antimat–interferometer experiments.

The result agrees with the prediction for the equivalent transition hydrogen to a precision of 5 x 10^-3.

Although the precision is not as high as that achieved in hydrogen, the finding represents a pivotal technological step towards laser cooling of antihydrogen and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Simulations indicate that cooling to about 20 mK is possible with the current ALPHA set-up, which, combined with other planned improvements, would reduce the 1S–2S transition line width (see figure) by more than an order of magnitude. At such levels of precision, says the team, antimatter spectroscopy will have an impact on the determination of fundamental constants, in addition to providing elegant tests of CPT symmetry. Laser cooling will also allow precision tests of the weak equivalence principle via antihydrogen-free-fall or antimat–interferometer experiments.

The result agrees with the prediction for the equivalent transition hydrogen to a precision of 5 x 10^-3.

Although the precision is not as high as that achieved in hydrogen, the finding represents a pivotal technological step towards laser cooling of antihydrogen and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Simulations indicate that cooling to about 20 mK is possible with the current ALPHA set-up, which, combined with other planned improvements, would reduce the 1S–2S transition line width (see figure) by more than an order of magnitude. At such levels of precision, says the team, antimatter spectroscopy will have an impact on the determination of fundamental constants, in addition to providing elegant tests of CPT symmetry. Laser cooling will also allow precision tests of the weak equivalence principle via antihydrogen-free-fall or antimat–interferometer experiments.

The result agrees with the prediction for the equivalent transition hydrogen to a precision of 5 x 10^-3.

Although the precision is not as high as that achieved in hydrogen, the finding represents a pivotal technological step towards laser cooling of antihydrogen and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Simulations indicate that cooling to about 20 mK is possible with the current ALPHA set-up, which, combined with other planned improvements, would reduce the 1S–2S transition line width (see figure) by more than an order of magnitude. At such levels of precision, says the team, antimatter spectroscopy will have an impact on the determination of fundamental constants, in addition to providing elegant tests of CPT symmetry. Laser cooling will also allow precision tests of the weak equivalence principle via antihydrogen-free-fall or antimat–interferometer experiments.

The result agrees with the prediction for the equivalent transition hydrogen to a precision of 5 x 10^-3.

Although the precision is not as high as that achieved in hydrogen, the finding represents a pivotal technological step towards laser cooling of antihydrogen and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Simulations indicate that cooling to about 20 mK is possible with the current ALPHA set-up, which, combined with other planned improvements, would reduce the 1S–2S transition line width (see figure) by more than an order of magnitude. At such levels of precision, says the team, antimatter spectroscopy will have an impact on the determination of fundamental constants, in addition to providing elegant tests of CPT symmetry. Laser cooling will also allow precision tests of the weak equivalence principle via antihydrogen-free-fall or antimat–interferometer experiments.

The result agrees with the prediction for the equivalent transition hydrogen to a precision of 5 x 10^-3.

Although the precision is not as high as that achieved in hydrogen, the finding represents a pivotal technological step towards laser cooling of antihydrogen and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Simulations indicate that cooling to about 20 mK is possible with the current ALPHA set-up, which, combined with other planned improvements, would reduce the 1S–2S transition line width (see figure) by more than an order of magnitude. At such levels of precision, says the team, antimatter spectroscopy will have an impact on the determination of fundamental constants, in addition to providing elegant tests of CPT symmetry. Laser cooling will also allow precision tests of the weak equivalence principle via antihydrogen-free-fall or antimat–interferometer experiments.

The result agrees with the prediction for the equivalent transition hydrogen to a precision of 5 x 10^-3.

Although the precision is not as high as that achieved in hydrogen, the finding represents a pivotal technological step towards laser cooling of antihydrogen and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Simulations indicate that cooling to about 20 mK is possible with the current ALPHA set-up, which, combined with other planned improvements, would reduce the 1S–2S transition line width (see figure) by more than an order of magnitude. At such levels of precision, says the team, antimatter spectroscopy will have an impact on the determination of fundamental constants, in addition to providing elegant tests of CPT symmetry. Laser cooling will also allow precision tests of the weak equivalence principle via antihydrogen-free-fall or antimat–interferometer experiments.

The result agrees with the prediction for the equivalent transition hydrogen to a precision of 5 x 10^-3.
US initiative to tackle data demands of HL-LHC

The US National Science Foundation (NSF) has launched a $25 million effort to help tackle the torrent of data from the High-Luminosity Large Hadron Collider (HL-LHC). The Institute for Research and Innovation in Software for High-Energy Physics (IRIS-HEP), announced on 4 September, brings together multidisciplinary teams of researchers and educators from 17 universities in the US. It will receive $5 million per year for a period of five years, with a focus on developing new software tools, algorithms, system designs and training the next generation of users.

Construction for the HL-LHC upgrade is already under way (CERN Courier July/August 2018 p7) and the machine is expected to reach full capability in the mid-2020s. Boosting the LHC’s luminosity by a factor of almost 10, HL-LHC will collect around 25 times more data than the LHC has produced up to now and push data processing and storage to the limit. How to address the immense computing challenges ahead was the subject of a recent community white paper published by the HEP Software Foundation (CERN Courier April 2018 p8).

In 2016, the NSF convened a project to gauge the LHC data challenge, bringing together representatives from the high-energy physics and computer-science communities to review two decades of successful LHC data-processing approaches and discuss ways to address the obstacles that lay ahead. The new software institute emerged from that effort.

The institute is primarily about people, rather than computing hardware, explains IRIS-HEP principal investigator and executive director Peter Elmer of Princeton University, who is also a member of the CMS collaboration. “The institute will be virtual, with a core at Princeton, but coordinated as a single distributed collaborative project involving the participating universities similar to many activities in high-energy physics.” He says, “High-energy physics had a rush of discoveries in the 1960s and 1970s that led to the Standard Model of particle physics, and the Higgs boson was the last missing piece of that puzzle. We are now searching for the next layer of physics beyond the Standard Model. The software institute will be key to getting us there.”

Co-funded by NSF’s Office of Advanced Cyberinfrastructure (OAC) and the NSF division of physics, IRIS-HEP is the third OAC software institute, following the Molecular Sciences Software Institute and the Science Gateways Community Institute. “Our US colleagues worked with us very closely preparing the community white paper last year, which was then used as one of the significant inputs into the NSF proposal,” says Graeme Stewart of CERN and the HEP Software Foundation. “So we’re really happy about the funding announcement and very much looking forward to working together with them.”

Hyper-Kamiokande (Hyper-K) is a water Cherenkov detector centered on a huge underground tank containing 300,000 tonnes of water, with a sensitive volume about a factor of 10 larger than its predecessor Super-Kamiokande (Super-K). Like Super-K, Hyper-K will be located in Kamioka on the west coast of Japan directly in the path of a neutrino beam generated 295 km away at the J-PARC facility in Tokai, allowing it to make high-statistics measurements of neutrino oscillations. Together with a near-detector located close to J-PARC, Super-K formed the “T2K” long-baseline neutrino programme. An order of magnitude bigger than Super-K,...
Hyper-K will serve as the next far-detector at T2K, with a rich physics program. This ranges from the study of CP violation in the leptonic sector and measurements of neutrino mixing parameters, to studies of proton decay, atmospheric neutrinos and neutrinos from astrophysical sources.

It was at Super-K in 1998 that researchers discovered neutrino oscillations, proving that neutrinos are massless, leading to the award of the 2015 Nobel Prize in Physics to Takaaki Kajita of the University of Tokyo and Arthur McDonald of Queen’s University in Canada. The Japanese neutrino programme has progressed steadily since the 1998 discovery (CERN Courier July/August 2016 p29). Hyper-K was discussed as long ago as 2002 and a letter of intent was published in 2011, following the first measurement of the neutrino mixing angle θ_{13} at T2K, which boosted the expectation of a discovery of leptonic CP violation by Hyper-K. The experiment was placed in Japan’s list of priority projects in 2014 but was not short-listed. The project was proposed again in 2017, this time making the short-list of seven projects to be funded by MEXT. The Hyper-K conceptual design report was published earlier this year (see further reading).

“Hyper-Kamiokande now moves from planning to construction,” said Hyper-K project co-leader Francesca Di Lodovico of Queen Mary University of London, in a statement released by the Kavli Institute for the Physics and Mathematics of the Universe in Japan on behalf of the Hyper-K collaboration. “The collaboration will now work on finalising designs, and is very open to more international partners joining this exciting, far-reaching new experiment.”

The Hyper-K protos-collaboration was formed in 2015 and currently consists of around 300 members from 75 institutes in 15 countries. Many European institutes are involved, including the CERN neutrino group, which is already participating in the upgrade of the T2K near detector to serve Hyper-K. To this end, in the summer of last year a detector called Baby MIND that was designed and built at CERN was shipped to J-PARC (CERN Courier July/August 2017 p2). “Hyper-K is the next step in the Japanese neutrino adventure,” says Baby MIND spokesperson and Hyper-K collaborator Alain Blondel of the University of Geneva. “This success comes from wise choices and intelligent planning. The increase in the far-detector mass is exciting: demonstration of an asymmetry between neutrinos and antineutrinos was identified as the ‘great discovery’ goal as soon as neutrino oscillations were discovered, although it presents a challenge regarding systematics. And if a proton decay is detected or a supernova strikes, it will be fireworks.”

The results of the survey will be distributed widely, including to nuclear, astroparticle and astrophysics, ECFA or CERN-recognised experiments in particle, physics and mathematics, and related EU projects in and beyond Europe, and related accelerator technologies, will be given.

Visibility and promotion of young people and the opportunities and challenges ahead of us. Everybody is welcome.”

The survey will be distributed widely, including to nuclear, astroparticle and astrophysics, ECFA or CERN-recognised experiments in particle, physics and mathematics, and related EU projects in and beyond Europe, and related accelerator technologies, will be given.

Visibility and promotion of young people and the opportunities and challenges ahead of us. Everybody is welcome.”

The survey addresses recognition in large collaborations

The European Committee for Future Accelerators (ECFA) has created a working group to examine the recognition of individual achievements in large scientific collaborations. Based on feedback from an initial survey of the leaders of 29 CERN-based or CERN-recognised experiments in particle, nuclear, astroparticle and astrophysics, ECFA found that the community is ready to engage in dialogue on this topic and receptive to potential recommendations.

In response, ECFA has launched a community-wide survey to verify how individual researchers perceive the systems put in place to recognise their achievements. The survey will be distributed widely, and can be found on the ECFA website (https://ecfa.web.cern.ch) with a deadline for responses by 26 October.

The results of the survey will be disseminated and discussed at the upcoming plenary ECFA meeting at CERN on 15–16 November. An open session during the morning of 15 November, also to be webcast, will be devoted to the discussion of the outcomes of the survey, and aims to gather input to be submitted to the update of the European Strategy for Particle Physics

Hyper-K’s giant tank will take neutrino science into uncharted waters.

Thin silicon sharpenes STAR imaging

A new technology has enabled the STAR collaboration at Brookhaven National Laboratory’s Relativistic Heavy-Ion Collider (RHIC) to greatly expand its ability to reconstruct short-lived charm hadrons, even for collisions containing thousands of tracks. A group of STAR collaborators, led by Lawrence Berkeley National Laboratory, used a Monolithic Active Pixel Sensor (MAPS) chips in its new vertex detector, called the heavy-flavour tracker (HFT), representing the first application of this technology in a collider experiment.

The HFT reconstructs charmed hadrons over a broad momentum range by identifying their secondary decay vertices, which are a few tens to hundreds of micrometres away from the collision vertex. The charmed hadrons are used to study heavy-quark energy loss in a quark–gluon plasma (QGP) and to determine emergent QGP-medium transport parameters.

The MAPS sensor is based on the same commercial CMOS technology that is widely used in digital cameras. It comprises an array of 928 × 960 square pixels with a pitch of 20.7 × 20.7 µm² to a sensitivity of 5µm.

The sensors are thinned to a thickness of 50µm and mounted on a carbon-fibre mechanical support, and their relatively low power consumption (170 mW/cm²) allows them to be air-cooled. The thinness is important to minimise multiple scattering in the HFT, allowing for good resolution even for low-transverse-momentum charged tracks.

The heavy-flavour physics programme enabled by the HFT has been one of the driving forces for RHIC runs from 2014 to 2016. The first measurement with the HFT collaboration on the D’ mesons have significant hydrodynamic flow in gold–gold collisions, and the HFT pointing resolution also enabled the first measurement of charmed-baryon production in heavy-ion collisions.

Building on the success of the STAR HFT, the ALICE collaboration at CERN’s Large Hadron Collider is now building its own MAPS-based vertex detector – the ITS upgrade – and the sPHENIX collaboration at RHIC is also planning a MAPS-based detector. The ITS upgrade will not only increase the momentum range but will also improve the vertex detectors’ efficiency and ability to detect bottom hadrons more efficiently in high-luminosity, heavy-ion collision environments.

First low-mass dielectron results ahead of LHC Run 3

One of the main objectives of the ALICE physics programme for future LHC runs is the precise measurement of the e^-e^+ (dielectron) invariant-mass continuum produced in heavy-ion collisions. In contrast to strongly interacting hadronic probes, dielectrons provide an unambiguous view into the quark–gluon plasma (QGP), a phase of deconfined quarks and gluons that is produced in such collisions. For example, they will allow physicists to determine the initial temperature of the QGP and to study the effects of the predicted restoration of chiral symmetry. In order to perform these measurements, important upgrades to the ALICE detector system are underway, most notably a new inner tracking system and a new readout system for the time projection chamber.

Meanwhile, the ALICE collaboration has also analysed the proton–proton (pp) and lead–lead (Pb–Pb) collision data recorded so far during LHC Run 1 and 2. The results, which have recently been submitted for publication, provide new physics insights, in particular into the production of heavy quarks (charm and beauty) in pp collisions at centre-of-mass energies of 7 and 13 TeV. The measured invariant-mass spectrum of dielectrons (see figure) has been found to be in good agreement with the expected distribution of dielectrons from decays of light mesons and J/ψ, as well as semi-leptonic decays of correlated heavy-flavour pairs. The Pb–Pb results, recorded at a centre-of-mass energy of 2.76 TeV per nucleon–nucleon pair, are not yet sensitive enough to quantitatively present the thermal radiation and signs of chiral symmetry restoration on top of the vacuum expectation.

The results obtained in pp collisions at 13 TeV provide the first measurements of charm and beauty production cross sections at mid-rapidity integrated over all transverse momenta at the current highest LHC energy. Fitting the data with two different models of heavy-flavour production (PYTHIA 6.4 and HIJING) provides a three-dimensional distribution of these two variables, which can be used to constrain theoretical approaches.
A decade of advances in jet substructure

Ten years ago, the first in a series of annual meetings devoted to the theoretical and experimental understanding of massive hadronically decaying particles with high transverse momenta took place at SLAC. These “BOOST” workshops coincided with influential publications on the subject of reconstructing such Lorentz-boosted decays as single jets with large radius parameters [1], which kick-started the field of jet substructure. Such techniques achieve improvements of more than 10% in terms of background rejection for top quark identification over previous results (figure, right).

Fixed-target physics in collider mode at LHCb

This year, the LHCb collaboration reached an important milestone in its fixed-target physics programme, publishing two key results on the production rates of particles in proton–nucleus collisions: measurements of the cross section of antigluons that constrain models of cosmic rays, and of charmonium and top-charm-cross sections (see further reading).

LHCb has just taken the first step towards the use of charmonium and open-charm hadrons as probes of the QGP by measuring their cross-sections in proton–nucleus collisions, where no QGP is expected to be formed. The data for these measurements come from two SMOG data-taking campaigns with proton beams—one carried out over a period of 18 hours in 2015 with a beam of energy 6.5 TeV and an argon gas target (meaning a centre-of-mass energy per colliding nucleus–nucleon pair, \(\sqrt{s_{NN}}\), of 110 A GeV), and the other over a period of 87 hours in 2016 with a 4 TeV beam and a helium target (\(\sqrt{s_{NN}}\) = 86.6 GeV).

The 3Jg cross-section, measured with the 4 TeV LHC proton beam hitting gaseous helium (red point) compared to previous experimental results (blue) and a fit based on theoretical calculations (yellow).

LHCb published the first results from a new heavy-physics programme focused on the study of the quark–gluon plasma (QGP) by measuring charmonium and open-charm cross sections at the LHC.

Further reading

Fixed-target physics in collider mode at LHCb
The observation of the Higgs-boson decay to bottom quarks–antiquarks (bb–) by the CMS experiment is a seminal achievement that sheds light on one of the key missing pieces of the Higgs sector of the Standard Model (SM).

Processes that include the Higgs boson’s favoured decay mode to b-quarks (with about 58% probability) have until now remained elusive because of the overwhelming background of b-quark events produced via strong interactions. While the recent CMS observation of Higgs boson production in association with top quarks (tH) constitutes the first confirmation of the tree-level coupling of the Higgs boson to top quarks (CERN Courier June 2018 p10), the Higgs-boson decay to b-quarks is believed to be the most direct way to gather information on the Higgs-boson signal.

The dijet invariant mass distribution (figure, right) allows for a more direct visualisation of the Higgs-boson signal. The significance of this excess is 4.4σ, where the expectation from SM Higgs-boson production is 5.5σ. The signal strength corresponding to this excess, relative to the SM expectation, is 1.06 ± 0.26, in perfect agreement with the latter.

The VH results are combined with CMS measurements in other production processes, including gluon fusion, vector boson fusion, and associated production with top quarks, with data collected at 7, 8 and 13 TeV, depending on the process. The observed combined significance is raised to 5.6σ, where the expectation from SM Higgs-boson production is 5.5σ. The signal strength corresponding to this excess, relative to the SM expectation, is 1.04 ± 0.20, in perfect agreement with the latter.

Further reading
High-Speed Cameras for Visible, Soft X-Ray, VUV and EUV Applications

Princeton Instruments is the trusted choice for synchrotrons and laboratories worldwide!

<table>
<thead>
<tr>
<th>PI-MTE3</th>
<th>SOPHIA°-XO</th>
<th>KURO™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proven in-vacuum cameras</td>
<td>Back-illuminated, 4-port CCD cameras</td>
<td>Back-illuminated scientific CMOS cameras</td>
</tr>
<tr>
<td>2k x 2k and 4k x 4k</td>
<td>2k x 2k and 4k x 4k</td>
<td>Excellent sensitivity in the 200nm - 1100nm range</td>
</tr>
<tr>
<td>Up to 3 fps</td>
<td>Up to 3 fps</td>
<td>120 fps at 800 x 800</td>
</tr>
<tr>
<td>Low outgassing</td>
<td>95% QE, back-illuminated</td>
<td>47 fps at 2k x 2k</td>
</tr>
<tr>
<td>Designed for SAXS, GIXD</td>
<td>Low-noise, deep-cooled</td>
<td>100% fill factor</td>
</tr>
</tbody>
</table>

Some 180 years ago, a relatively normal star called Eta Carinae suddenly brightened to become the second brightest star in the sky, before almost disappearing at the end of the 19th century. The sudden brightening and subsequent disappearance, recorded by astronomer John Herschel, suggested that the star had undergone a supernova explosion, leaving behind a black hole. More recent observations have shown, however, that the star still exists – ruling out the supernova hypothesis. Even more remarkably, what remains is a binary system of two stars, the more massive of which is surrounded by a large nebula.

Although supernovae imposters such as Eta Carinae are now known to occur in other galaxies, this event – known as the Great Eruption – appeared relatively close to Earth at a distance of around 7500 light years. It is therefore a perfect laboratory in which to study what exactly happens when stars appear to survive a supernova.

The fate of Eta Carinae has remained mysterious, but since the turn of the millennium clues have emerged in echoes of the light emitted during the Great Eruption. While the light observed in the 19th century travelled directly from the system towards Earth, other light initially travelled towards distant clouds surrounding the stars before being reflected in our direction. In 2003, the light echoes from this event were bright enough to be observed using the moderate-sized telescopes at the Cerro Tololo Inter-American Observatory in Chile, while the different gas clouds reflecting the light were observed more recently using the larger scale Magellan Observatory and the Gemini South Observatory, also located in Chile. By comparing historical records of the variability observed in the 19th century with the variability of the light reflected from a gas cloud, it can be determined how far in the past astronomers are observing the explosion.

Now, a team led by Nathan Smith of the University of Arizona in Tucson has studied the spectra of the light echo in more detail using the 6.5-m Magellan telescopes and found that it matches observations during the 1840s and 1850s, when the Great Eruption was at its peak. Spectral analysis of the reflected light indicates that initially matter was ejected at relatively low velocities of 150–200 km s⁻¹, while during the 1850s some matter was travelling at speeds of 10,000–20,000 km s⁻¹. The data are compatible with a system that first ejects material as one star brightens followed by more violent ejection from an explosion.

Smith and collaborators claim that the scenario which best matches the data, including information about the age and mass of the two remaining stars, is that the system originally consisted of three stars. The two closest stars initially interacted to form one massive star, while the donor star moved further away, losing mass and thereby increasing the radius of its orbit around the massive star. The gravitational field of the far-away donor star would have caused the orbiting third star to dramatically change orbit, forcing it to spiral into the massive central star. In doing so, its gravitational interactions with the massive star caused it to shed large amounts of matter as it started to burn brighter. Finally, the binary system merged, causing a violent explosion where large amounts of stellar material were ejected at large velocities towards the earlier ejected material. As the fast ejecta smashed into the slower moving ejecta, a bright object was formed on the night sky that was visible for many years during the 1850s. The remaining binary system still lights up every few years as the old donor star moves through the nebula left over from the merger.

The new details about the evolution of this complex and relatively nearby system not only teach us more about what was observed by Herschel almost two centuries ago, but also provide valuable information about the evolution of massive stars, binary and triple systems, and the nature of the supernovae imposters.

Further reading
N. Smith et al. 2018 MNRAS 480 1457.

Picture of the month
This image of the Andromeda galaxy, the closest neighbouring major galaxy to our Milky Way, is disturbed by a bright green line. The line is a result of a meteor the size of a grain of sand entering the Earth’s atmosphere during the Perseid meteor shower visible every August. The meteor can be seen to flare several times as it travels through the atmosphere for only a fraction of a second. The green colour is the result of the meteor vaporising in the Earth’s atmosphere. As both the atmosphere and the meteor itself glow, different colours can be created. The green colour observed here hints that the meteor contains large amounts of nickel.

Visit www.princetoninstruments.com to learn more about these and other Princeton Instruments products
info@princetoninstruments.com | Phone: +1 609 587 9797
SUPERCON, Inc.
Superconducting Wire and Cable

Standard and Specialty designs are available to meet your most demanding superconductor requirements.

SUPERCON, Inc. has been producing niobium-based superconducting wires and cables for half a century. We are the original SUPERCON – the world’s first commercial producer of niobium-alloy based wire and cable for superconducting applications.

Standard SC Wire Types
- NbTi Wires
- Nb3Sn — Bronze
- Nb3Sn — Internal Tin
- CuNi resistive matrix wires
- Fine diameter SC Wires
- Aluminum clad wire
- Wire-in-Channel
- Innovative composite wires

Product Applications
- Magnetic Resonance Imaging
- Nuclear Magnetic Resonance
- High Energy Physics
- SC Magnetic Energy Storage
- Medical Therapeutic Devices
- Superconducting Magnets and Coils
- Crystal Growth Magnets
- Scientific Projects

“We deliver superconductivity!”
Contact us at sales@supercon-wire.com
www.SUPERCON-WIRE.com

Defeating the background in the search for dark matter

A global effort is under way to carry out a complete search for high-mass dark-matter particles using an experiment called DarkSide-20k and its successor, which rely on novel liquid-argon technologies.

Compelling cosmological and astrophysical evidence for the existence of dark matter suggests that there is a new world beyond the Standard Model of particle physics still to be discovered and explored. Yet, despite decades of effort, direct searches for dark matter at particle accelerators and underground laboratories alike have so far come up empty handed. This calls for new and improved methods to spot the mysterious substance thought to make up most of the matter in the universe.

Dark-matter searches using detectors based on liquefied noble gases such as xenon and argon have long demonstrated great discovery potential and continue to play a major role in the field. Such experiments use a large volume of material in which nuclei struck by a dark-matter particle would create a tiny burst of scintillation light, and the very low expected event rate requires that backgrounds are kept to a minimum. Searches employing argon detectors have a particular advantage because they can significantly reduce events from background sources, such as background from the abundant radioactive decays from detector materials and from electron scattering by solar neutrinos. That will leave the low-rate nuclear recoils induced by coherent scattering of atmospheric neutrinos as the sole residual background – the so-called “ neutrino floor”.

Enter the Global Argon Dark Matter Collaboration (GADMC), which was formed in September 2017. Comprising more than 300 scientists from 15 countries and 60 institutions involved in four first-generation dark-matter experiments – ArDM at Laboratorio Subterráneo de Canfranc in Spain, DarkSide-20k at LNGS, DEAP-3600 and MiniCLEAN at SNOLAB in Canada – GADMC is working towards the immediate deployment of a dark-matter detector called DarkSide-20k. The experiment would accumulate an exposure of 100 tonne x year and be followed by a much larger detector to collect more than 1000 tonne x year, both potentially with no instrumental background. These experiments promise the most complete exploration of the mass/parameter range of the present dark-matter paradigm.

Direct detection with liquid argon

One well-considered form of dark matter that matches astrophysical measurements is weakly interacting massive particles (WIMPs), which would exist in our galaxy with defined numbers and velocities. In a dark-matter experiment employing a liquid-argon detector, such particles would collide with argon nuclei, causing them to recoil. These nuclear recoils produce ionised and excited argon atoms which, after a series of reactions, form short-lived argon dimers (weakly bonded molecules) that decay and emit scintillation light. The time profile of the scintillation light is significantly different from that created by argon-ionising events associated with radioactivity in the detector material, and has been shown to enable a strong rejection of background sources through a technique known as pulse-shape discrimination.

Located at LNGS, DarkSide-50 is the first physics detector of the DarkSide programme for dark-matter detection, with a fiducial mass of 50 kg. The experiment produced its first WIMP search results in December 2014 using argon harvested from the atmosphere and, in October the following year, reported the first ever WIMP search results using lower-radioactivity underground argon. DarkSide-50 uses a detection scheme based on a dual-phase time...
projection chamber (TPC), which contains a small region of gaseous argon above a larger region of liquid argon (figure 1A). In this configuration, secondary scintillation light, generated by ionisation electrons that drift up through the liquid region and are accelerated into the gaseous one, are used together with the primary scintillation light to look for a signal. Compared to single-phase detectors using only the pulse-shape discrimination technique, this search method requires even greater care in restricting the radioactive background through detector design and fabrication but provides excellent position resolution. For low-mass (<10 GeV/c²) WIMPs, the primary scintillation light is nearly absent, but the detectors remain sensitive to dark matter through the observation of the secondary scintillation light.

Argon-based dark-matter searches have had a number of successes in the past two years (figure 2). Darkside-50 established the availability of an underground source of argon strongly depleted in the radioactive isotope 39Ar, while DEAP-3600 (figure 3), the largest (3.3-tonne) single-phase liquid-argon running experiment, provided the best value to date on the precision of pulse-shape discrimination for scintillation light, better than 1 part in 10⁹. In terms of measurements, Darkside-50 released results from a 500-day detector exposure completely free of instrumental background and set the best exclusion limit for interactions of WIMPs with masses between 1.8 and 6 GeV/c². Similar results to those from Darkside-50 for the mass range above 40 GeV/c² were reported in the first paper from DEAP-3600, and results from a one-year exposure of DEAP-3600 with a fiducial mass of about 1000 kg are expected to be released in the near future.

High-sensitivity searches for WIMPs using noble-gas dual-phase TPC detectors are complementary to search experiments at the Large Hadron Collider (LHC) in the mass region accessible at the current LHC energy of 13 TeV (which is limited to masses of a few TeV/c²) and can reach masses of 100 TeV/c² and beyond with very good sensitivity.

Leading limits

The best limits to date on high-mass WIMPs have been provided by xenon-based dual-phase TPCs—the leading result given by the recently released XENON1T exposure of 1 tonne × year (figure 2). In spite of a small residual background, they were able to exclude WIMP nuclear-spin-independent elastic-scatter cross-sections above 4.1 × 10⁻²⁲ cm² at 30 GeV/c² at 90% confidence level (CERN Courier May/June 2018). Larger xenon detectors (XENO1e and DARWIN) are also being developed by the same collaboration (CERN Courier March 2017 p35).

The next generation of xenon and argon detectors have the potential to extend the present sensitivity by about a factor of 10. But there is still a further factor of 10 to be increased before one reaches the neutrino floor—the ultimate level at which interactions of solar and atmospheric neutrinos with the detector material become the limiting background. This is where the GADMC liquid-argon detectors, which are designed to have pulse-shape discrimination capable of eliminating the background from electron scatter of solar neutrinos and internal radioactive decays, can provide an advantage. GADMC envisages a two-step programme to explore high-mass dark matter. The first step, Darkside-20k, has been approved for construction at LNGS by Italy’s National Institute for Nuclear Physics (INFN) and by the US National Science Foundation, with present and potentially future funding from Canada. Also a recognised experiment at CERN called RE-37, Darkside-20k is designed to collect an exposure of 100 tonne × year in a period of five years (to be possibly extended to 200 tonne × year in 10 years), completely free of any instrumental background. The start of data taking is foreseen for 2022–2023. The second step of the programme will involve building an argon detector that is able to collect an exposure of more than 1000 tonne × year. SNOLAB in Canada is a strong candidate to host this second-stage experiment.

Argon can deliver the ultimate background-free search for dark matter, but that comes with extensive technological development. First and foremost, researchers need to extract and distill large volumes of the gas from underground deposits, as argon in the Earth’s atmosphere is unsuitable owing to its high content of the radioactive isotope 39Ar. Second, the scintillation light has to be efficiently detected, requiring innovative photodetector R&D.

Sourcing pure argon

Focusing on the first need, atmospheric argon has a radioactivity of 1 Bq/kg, which is entirely caused by the activation of 39Ar by cosmic rays. Given that the drift time of ionisation electrons over a length of 1 m is 1 ms, a dual-phase TPC detector reaches a complete pile-up condition (i.e. when the event rate exceeds the detector’s ability to read out the information), at a mass of 1 tonne. Scintillation-only detectors do not fare much better, and given that the scintillation lifetime is 10 μs, they are limited to detectors with a fiducial mass of a few tonnes. The argon road to dark matter has thus required early concentration on solving the problem of procuring large batches of argon that are much more depleted in 39Ar than atmospheric argon is. The solution came through an unlikely path: the discovery that underground sources of CO₂ originating from Earth’s mantle carry sizable quantities of noble gases, in reservoirs where secondary production of 39Ar is significantly suppressed.

As part of a project called Urania, funded by INFN, GADMC will soon deploy a plant that is able to extract underground argon at a rate of 250 kg per day from the same site in Colorado, US, where argon for Darkside-50 was extracted. Argon from this underground source is more depleted in 39Ar than atmospheric argon by a factor of at least 1400, making detectors of hundreds of tonnes possible for high-mass WIMP searches.

Not content with this gift of nature, another project called ARIA, also funded by INFN, by the Italian Ministry of University and Research (MIUR), and by the local government of the Sardinia region, is developing a further innovative plant to actively increase the depletion in 39Ar. The plant will consist of a 350 m tall cryogenic-distillation tower called Seruci-I, which is under construction in the Monte Sinni coal mine in Sardinia operated by the Carbosulcis mining company. Seruci-I will study the active depletion of 39Ar by cryogenic distillation, which exploits the tiny dependence of the vapour pressure upon the atomic number. Seruci-I is expected to reach a production capacity of 10 kg of argon per day with a factor of 10⁻⁵ of 39Ar depletion per pass. This is more than sufficient to deliver—starting from the gas extracted with the Urania underground source—a one-tonne ultra-depleted argon target that could enable a leading programme of searches for low-mass dark matter. Seruci-I is also expected to perform strong chemical purification at the rate of several tonnes per day and will be used to perform the final stage of purification for the 50 tonne underground argon bulk for Darkside-20k as well as for GADMC’s final detector.

CERN plays an important role in Darkside-20k by carrying out vacuum tests of the 30 modules for the Seruci-I column (figure 4) and by hosting the construction of the cryogenics for Darkside-20k. At the time of its approval in 2017, Darkside-20k was set to be deployed within a very efficient system of neutron and cosmic-ray rejection, based on that used for Darkside-50 and featuring a large organic liquid scintillator detector hosted within a tank of ultrapure deionised water. But with the deployment of new organic scintillator detectors now discouraged at LNGS due to tightening environmental regulations, GADMC is completing the design of a large, and more environmentally friendly, liquid-argon detector for neutron and cosmic-ray rejection based on the cryostat technology developed at CERN to support prototype detector modules for the future Deep Underground Neutrino Experiment (DUNE) in the US. Turning now to the second need of a background-free search for dark matter—the efficient detection of the scintillation light—researchers are focusing on perfecting existing technology to make low-radioactivity silicon photomultipliers (SiPMs) and using them to build large-area photodetectors that are capable of replacing the traditional 3" cryogenic photomultipliers. Plans for Darkside-20k settled on the use of so-called NEU-V HD Triple-Dose SiPMs, designed by Fondazione Bruno Kessler of Trento, Italy, and produced by LFoundry of Avezzano, also in Italy. In the meantime,
researchers at LNGS and other institutions succeeded in overcoming the huge capacitance per unit surface (50 pF/mm²) required to build photosensors that have an area of 25 cm² and deliver a signal-to-noise ratio of 15 or larger. A new INFN facility, the Nuova Officina Assergi, was designed to enable the high-throughput production of SiPMs to make such photosensors for DarkSide-20k and future detectors, and it is now under construction.

GADMC’s programme is complemented by a world-class effort in high magnetic field production and probe placement, as well as greatly improved tolerance of inhomogeneous fields and probe placement, as well as greatly improved tolerance of inhomogeneous fields. And with Ethernet & USB interfaces and LabVIEW software, it fits perfectly into modern laboratory environments.

PT2026 NMR Precision Teslameter

Reach new heights in magnetic field measurement

The Metrolab PT2026 sets a new standard for precision magnetometers. Leveraging 30 years of expertise building the world’s gold standard magnetometers, it takes magnetic field measurement to new heights: measuring higher fields with better resolution.

The PT2026 offers unprecedented flexibility in the choice of parameters, interfacing and probe placement, as well as greatly improved tolerance of inhomogeneous fields. And with Ethernet & USB interfaces and LabVIEW software, it fits perfectly into modern laboratory environments.
Empowering Africa’s youth to shape its future

Established 15 years ago, the African Institute for Mathematical Sciences (AIMS) has seen nearly 2000 students in mathematics and physics from 43 nations graduate as part of a pan-African model for sustainable development.

It was 2001 and Neil Turok, a cosmologist at the University of Cambridge at the time, was on sabbatical in his home town of Cape Town, South Africa. At dinner one evening, his father, who himself was a member of the first South African congress following the end of apartheid in 1994, posed the question: what will you do for Africa? Two years later, Turok founded the African Institute for Mathematical Science (AIMS), with the mission to improve mathematics and science education throughout the African continent. The first centre, in 2003 at a derelict resort hotel in the small surfer town of Muizenberg, just south of Cape Town, saw 12 students graduate. Since that time, AIMS has grown to span the whole continent, with five more centres founded in Tanzania, Ghana, Senegal, Cameroon and most recently in Rwanda. The centres have produced almost 2000 graduates and form part of a pan-African and global network of mathematicians and physicists called the Next Einstein Initiative (NEI), a number of whom work in high-energy physics experiments at CERN and elsewhere.

Africa is a continent filled with potential, rich in natural resources and with a population that is projected to comprise nearly 50% of the world population before the end of the century. But it is also a continent plagued by problems that hinder development and success, particularly in mathematics and science (figure 1). More people die each year from AIDS and civil war than anywhere else in the world, and access to quality education at all levels is tenuous, at best. The mission of AIMS and NEI is to address these issues by empowering Africa’s brightest students and propelling them towards scientific, educational and economic self-sufficiency.

The AIMS curriculum

The primary way that AIMS contributes to this transformation is an intensive one-year master’s programme that runs from August to June each year. Preparation begins well in advance, starting in January when lecturers from around the world submit proposals to teach three-week courses at one of the six centres. In parallel, students from all over Africa apply and are selected through a very competitive process, with upwards of 2000 students vying for around 50 spots at each centre. The goal of both sets of applications, for lecturers as well as students, is to ensure that the very best people are brought together.

The course is highly structured. For the first 10 weeks, students attend a series of skills courses with an emphasis on problem solving and computing. The curriculum then enters a review phase, where students elect to follow two courses for every three-week block. The courses are dynamic, selected by the academic director of each centre every year and then taught by (mostly foreign) lecturers, who have complete freedom to write the course as they so choose. The beauty of such a curriculum is the diverse set of topics that can be taught side-by-side, which allows students to sample new topics – a day that begins with a course on financial mathematics could end with students writing a simulation for computational neuroscience. Three weeks later, the courses change and students can find themselves immersed in knot theory or Monte Carlo methods in particle physics. This cadence continues for 18 weeks, during which time the students are able to build connections with academics from around the world and find the course that suits them best. This builds to the final portion of the course, called the essay phase, in which students identify a mentor and a project from a list of proposed topics. The student then works independently for a period of 10 weeks under the supervision of a mentor, culminating in a thesis essay and oral examination. If this fast-paced academic course were not enough, the entire course is taught in English, which for many students is not their first language. Adding to their workloads, students are taught courses in English and writing throughout.

Strong support

Unlike many institutions, success at AIMS is limited only by a student’s will to achieve. All fees are paid by AIMS, as well as the costs of relocating, accommodation and food. Each student is provided with a personal computer (which for many students is the first computer they have ever owned) and a team of five to 10 academic tutors are hired to support the students in their studies and augment the lectures when necessary. This all ensures that the complete focus of...
the student can be on their studies and development as an academic. The result is a nearly 100% success rate, with more than 30% of graduates being female and AIMS graduates representing 43 out of 54 African nations. These students most often go on to enter research master’s and PhD programmes in Africa and elsewhere, their university education having been in some way validated through the standards set by AIMS and the international institutions that support it. However, nearly all AIMS graduates eventually do return to Africa, whether it be in industry or research, thus contributing to their home nation. Some alumni even return to the school as lecturers themselves. Ultimately, the goal of AIMS and NEI is to establish 15 centres throughout Africa by 2030 and to establish a sustainable pan-African academic culture.

A lecturer’s perspective

To offer a first-hand account of a typical day as a lecturer, it’s 19:00 and you have just sent the last e-mail of the day. Desk is welcome since it promises to relieve some of the heat. If you’re in Birwira, Ghana, make sure to close the window and put on some mosquito repellent. There was a student in your class who excused himself yes- terday for not completely finishing his homework. He has Malaria. He’s working a lot anyhow and he’ll be better soon, but you would be completely knocked out if you caught it. As you are about to close books that you showed them is not uncommon, even after midnight. Your average AIMS student is inquisitive, hard-working and passion- ationate, and the vastly different academic backgrounds of students in your class will force you to have to answer questions from very basic to very advanced levels. One day, a student might be “angry” because you told them that morning how light is both a wave and a particle. After the first days of shyness (many students have never been encouraged to state their own opinion over a science matter), they’ll question what you say, and clearly it is not possible that a thing is a wave but also a particle, is it?!

Don’t expect to spend your evening not doing physics unless you really need a break, in which case take a walk on the beach or, if you’re at the Muizenberg centre in South Africa, grab a surf-board. For those of you familiar with CERN, the parallel that might best explain the AIMS atmosphere is the “Bermuda triangle” of Restaurant 1, the hostel and your office: you can manage to spend weeks there before breaking out and spending some time to explore Geneva, the Jura, and the world around you. AIMS students are ambitions and grateful for the opportunity to work and learn, so they can easily spend their days between the lecture room, the canteen and the computer lab without leaving the building. As an AIMS lecturer, it is thus good to come prepared for a few extra-curricular activities. This could range from showing students how to swim in the shallow waters of the Indian Ocean in Bagamoyo, taking them on an all-day hike to Table Mountain in Cape Town, or an extra tutorial on how to write a good application or give a talk, not to mention a discussion about how to shape Africa’s future. Topics such as how a woman can be a president in some countries (or a physics lecturer for that matter) are sure to attract the atten- tion of all students, even those not directly in your class.

The last few days of your three-week lecture block are the most special. Students give presentations on topics that go beyond what your lecture contains, having spent every free minute preparing. Building confidence in the student’s mind is your most important mission at AIMS, and the students have every reason to be confident. Most of them had to fight to get a good education that is taken for granted in many countries, and they all want to make an impact in building Africa’s future. After the student’s talks, the ceremony and party starts. Lecturers are bid farewell, and you may well be handed a traditional African costume to be dressed properly for the party. Then, with some exceptionally gifted dancers taking the lead, you’ll not be let go before at least attempting to move gracefully to the lat- est African pop-music, all without a single drop of alcohol in sight.

Back at your workplace, AIMS stays with you. Many students will keep you updated on their career, seek a reference letter from you, or eventually join you as researcher. Becoming involved with AIMS is for someone who is interested in working with some of the best students in the world, most of whom have had to fight hard to get there. There are a variety of options. For those with master’s degrees in mathematics and science, it is possible to serve as an academic tutor at an AIMS institute for a period of one year, during which time you will work closely with students as a mentor and act as a bridge between the shorter term lecturers. For those with PhD degrees, it is possible to act as either an essay supervisor or a lecturer. In both instances, the topic of instruc- tion is designed by you, giving you control and flexibility to tailor the course to your interests and expertise. In whatever capacity you decide to become involved, it is an opportunity you will not regret.

Student case study: Lijoka Oluwaseun from Nigeria graduated from AIMS-Ghana in 2013

“We never know what we will become at the start of life until we get to a certain destination. I had a continuous form of education, but at each level I started at one institution and completed at another, either by transfer or scholarship. As a result, I have attended many different academic institutions. However, AIMS has taught me a different approach to life and academia. I discovered the spirit of learning through discussions and collaborating with colleagues, and realised that there is more gain in knowledge, discovery and results when collaborating with colleagues. Also at AIMS, I was subjected to the rigorous theoretical discipline of mathematics as well as the practical aspects of physics. Unlike many Nigerian universities, AIMS is a 24/7 learning environment equipped with many facilities and the best lecturers from the Federal University of Technology, Akure in Nigeria. However, AIMS has taught me discipline and self-sufficiency. I have no idea where this path would lead me. My objective is to pursue a career in physics. I had no idea why this path would take me. My attitude in physics and mathematics was clearly higher than it was in chemistry and biology, and after performing poorly in my first year of undergraduate studies, I decided to pursue a career in physics. I had no idea what this path would be like. Physics is studied in the society in which I grew up, as it was not seen as a prestigious and rewarding field, so I initially chose medical physics. At this point, I had lost hope and my sense of direction; I was simply moving with the wind! Then, in my final year of undergraduate studies, I attended the African school of Physics (ASP) where I heard about AIMS and where my future career began. It was also at ASP that a friend told me about AIMS, and I applied the following year. Lectures in particle physics were given with great enthusiasm and I decided to pursue a master’s in theoretical physics at the University of Cape Town. It was during my master’s that I came to CERN for the very first time as a summer student. The experience was like nothing I had ever dreamt of, and it led to a PhD studentship within the ATLAS experiment where I work on the “New Small Wheel” project and also in the Standard Model electroweak exclusion program at AIMS which has connected me to the world.”

Student case study: Arnaud Andrianavalomahefa from Madagascar graduated from AIMS-South Africa in 2015

“I received a full scholarship from AIMS to undertake postgraduate studies in particle physics in South Africa. In 2013, it was a crucial turning point in the course of my life. Education in Madagascar lacks means and infrastructure, and remains barely accessible for the average person, despite free public universities. This is where AIMS kicks in, giving students access to a high educational standard regardless of their financial means, and even removing the traditional language barrier: AIMS is an intensive 10-month-long boot camp for maths lovers; physicists, engineers, biologists, or chemists... all gathered in one place. But AIMS is also a family where diverse cultures meet, greet, might clash and often fuse, resulting in a lively and lovely social dynamic. During my studies at AIMS, I had the opportunity to collaborate with international experts at the frontier of science, and part of my work dealt with the quark–gluon plasma. Being further seduced by particle physics, after graduating successfully from AIMS I decided to embark on another master’s programme and was accepted by Durham University in the UK. I am now halfway through a PhD at the Karlsruhe Institute of Technology, Germany, working on dark matter – another topic inspired by an AIMS lecturer. Studying abroad was definitely something I could not have afforded, and the role of AIMS is to give opportunities that possible is unaffordable.”

Student case study: Chiulya Mwewa from Zambia graduated from AIMS-South Africa in 2015

“As a child growing up in Zambia, my dream was to pursue a career in physics. However, my aptitude in physics and mathematics was clearly higher than it was in chemistry and biology, and after performing poorly in my first year of undergraduate studies, I decided to pursue a career in physics. I had no idea what this path would take me. My career in physics was shrouded in the society in which I grew up, as it was not seen as a prestigious and rewarding career, so initially I chose medical physics. At this point, I had lost hope and my sense of direction; I was simply moving with the wind! Then, in my final year of undergraduate studies, I attended the African school of Physics (ASP) where I heard about AIMS and where my future career began. It was also at ASP that a friend told me about AIMS, and I applied the following year. Lectures in particle physics were given with great enthusiasm and I decided to pursue a master’s in theoretical physics at the University of Cape Town. It was during my master’s that I came to CERN for the very first time as a summer student. The experience was like nothing I had ever dreamt of, and it led to a PhD studentship within the ATLAS experiment where I work on the “New Small Wheel” project and also in the Standard Model electroweak exclusion program at AIMS which has connected me to the world.”

Student case study: Adebayo Adeleke from Nigeria graduated from AIMS-South Africa in 2015

“I had a first-class bachelor’s degree in physics/telecommunication from the Federal University of Technology Minna, Nigeria, before applying to AIMS, where I bagged a master’s degree in mathematical physics. I had heard about AIMS from my former supervisor at the Federal Polytechnic Ifada in Nigeria, just as I was making the critical decision to choose a field from pure to computational theoretical physics. AIMS exposed me to an international level of education, and my experience was deep and full of fun. The rigour in the way AIMS modules were delivered in world class, supported me to embark on another master’s programme and was accepted by Durham University in the UK. I am now halfway through a PhD at the Karlsruhe Institute of Technology, Germany, working on dark matter – another topic inspired by an AIMS lecturer. Studying abroad was definitely something I could not have afforded, and the role of AIMS is to give opportunities that possible is unaffordable.”

Beyond that, AIMS also supported me financially to take up the study in my preferred institution – the University of Saskatchewan, Canada. AIMS has influenced and shaped my career in a positive way, and I am currently in the second year of my PhD programme, for which I am the recipient of the Gerard Herzberg Memorial Scholarship in Physics for 2018/2019. My thesis is in computational design of functional and high-energy density materials. I can say with certainty that AIMS launched me into the international academic community and even supported me in finding my feet afterwards.”

Student case study: Samuel Meehan
Protons and neutrons, the building blocks of nuclear matter, constitute about 99.9% of the mass of all visible matter in the universe. In contrast to more familiar atomic and molecular matter, nuclear matter is also inherently complex because the interactions and structures in nuclear matter are inextricably mixed up: its constituent quarks are bound by gluons that also bind themselves. Consequently, the observed properties of nucleons and nuclei, such as their mass and spin, emerge from a complex, dynamical system governed by quantum chromodynamics (QCD). The quark masses, generated via the Higgs mechanism, only account for a tiny fraction of the mass of a proton, leaving fundamental questions about the role of gluons in nucleons and nuclei unanswered.

The underlying nonlinear dynamics of the gluon’s self-interaction is key to understanding QCD and fundamental features of the strong interactions such as dynamical chiral symmetry breaking and confinement. Despite the central role of gluons, and the many successes in our understanding of QCD and its properties from quarks and gluons.

EIC’s scientific goals: in brief

An electron–ion collider would answer core questions about strongly interacting matter:
- How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleus? How do the nuclear properties emerge from quark and gluon interactions?
- How do colour-charged quarks and gluons, and colourless jets, interact with a nuclear medium? How do confined hadronic states emerge from quarks and gluons? How do quark–gluon interactions create nuclear binding?
- How does a dense nuclear environment affect quarks and gluons, their correlations, and their interactions? What happens to the gluon density in nuclei: does it saturate at high energy, giving rise to gluonic matter with universal properties in all nuclei, even the proton?

Discover these and more – download the first chapter of every title for free.

iopscience.org/books

Image credit: Jefferson Lab.

Electron–ion collider on the horizon

The National Academy of Sciences in the US finds a compelling scientific case for an advanced collider that would reveal how visible matter emerges from fundamental quarks and gluons.

Positive evaluation

To address these outstanding puzzles in modern nuclear physics, researchers in the US have proposed a new machine called the Electron Ion Collider (EIC). In July this year, a report by the National Academies of Sciences, Engineering, and Medicine commissioned by the US Department of Energy (DOE) positively endorsed the EIC proposal. “In summary, the committee finds a compelling scientific case for such a facility. The science questions (see “EIC’s scientific goals: in brief”) that an EIC will answer are central to completing an understanding of atoms as well as being integral to the agenda of nuclear physics today. In addition, the development of an EIC would advance accelerator science and technology in nuclear science; it would also benefit other fields of accelerator-based science and society, from medicine through materials science to elementary particle physics.”

From a broader perspective, the versatile EIC will, for the first time, be able to systematically explore and map out the dynamical system that is the ordinary QCD bound state, triggering a new area of study. Just as the advent of X-ray diffraction a century ago triggered tremendous progress in visualising and understanding the atomic and molecular structure of matter, and as the introduction of large-scale terrestrial and space-based probes in the last two to three decades led to precision observational cosmology with noteworthy findings, the EIC is foreseen to play a similarly

Key Nuclear Reaction Experiments

An Introduction to Elementary Particle Phenomenology

A Short Course on Relativistic Heavy Ion Calculations

Nuclear and Particle Physics

Effective Science Communication

The Foundations of Electric Circuit Theory

Precise Dimensions: A History of Precision From 1791–2018

Bias in Science and Communication

Logic for Physicists

Introduction to Beam Dynamics in High-Energy Electron Storage Rings

Entrepreneurship

Quantum Field Theory for Physicists

An arcane setting for explaining the world

Hans Paetz gen. Schieck

Grant Allen

Sam Illingworth

Roberto Iengo

Malcolm Cooper

Davide Iannuzzi

Jim Grozier

Asis Kumar Chaudhuri

Nicolas A Pereyra

Matthew Welsh

From university to market

A practical guide to move inventions from university to market

From a broader perspective, the versatile EIC will, for the first time, be able to systematically explore and map out the dynamical system that is the ordinary QCD bound state, triggering a new area of study. Just as the advent of X-ray diffraction a century ago triggered tremendous progress in visualising and understanding the atomic and molecular structure of matter, and as the introduction of large-scale terrestrial and space-based probes in the last two to three decades led to precision observational cosmology with noteworthy findings, the EIC is foreseen to play a similarly

To address these outstanding puzzles in modern nuclear physics, researchers in the US have proposed a new machine called the Electron Ion Collider (EIC). In July this year, a report by the National Academies of Sciences, Engineering, and Medicine commissioned by the US Department of Energy (DOE) positively endorsed the EIC proposal. “In summary, the committee finds a compelling scientific case for such a facility. The science questions (see “EIC’s scientific goals: in brief”) that an EIC will answer are central to completing an understanding of atoms as well as being integral to the agenda of nuclear physics today. In addition, the development of an EIC would advance accelerator science and technology in nuclear science; it would also benefit other fields of accelerator-based science and society, from medicine through materials science to elementary particle physics.”

From a broader perspective, the versatile EIC will, for the first time, be able to systematically explore and map out the dynamical system that is the ordinary QCD bound state, triggering a new area of study. Just as the advent of X-ray diffraction a century ago triggered tremendous progress in visualising and understanding the atomic and molecular structure of matter, and as the introduction of large-scale terrestrial and space-based probes in the last two to three decades led to precision observational cosmology with noteworthy findings, the EIC is foreseen to play a similarly

To address these outstanding puzzles in modern nuclear physics, researchers in the US have proposed a new machine called the Electron Ion Collider (EIC). In July this year, a report by the National Academies of Sciences, Engineering, and Medicine commissioned by the US Department of Energy (DOE) positively endorsed the EIC proposal. “In summary, the committee finds a compelling scientific case for such a facility. The science questions (see “EIC’s scientific goals: in brief”) that an EIC will answer are central to completing an understanding of atoms as well as being integral to the agenda of nuclear physics today. In addition, the development of an EIC would advance accelerator science and technology in nuclear science; it would also benefit other fields of accelerator-based science and society, from medicine through materials science to elementary particle physics.”

From a broader perspective, the versatile EIC will, for the first time, be able to systematically explore and map out the dynamical system that is the ordinary QCD bound state, triggering a new area of study. Just as the advent of X-ray diffraction a century ago triggered tremendous progress in visualising and understanding the atomic and molecular structure of matter, and as the introduction of large-scale terrestrial and space-based probes in the last two to three decades led to precision observational cosmology with noteworthy findings, the EIC is foreseen to play a similarly
An electron–ion collider (EIC) will open up the new regime where it is increasingly dominated by the three valence quarks to a regime where it is increasingly dominated by gluons generated through gluon radiation, as discovered at the former HERA electron–proton collider at DESY. Eventually, the gluon density becomes so large that the gluon radiation is balanced by gluon recombination, leading to nonlinear features of the strong interaction. From the LHC and RHIC we learned that neutrons and protons bound inside nuclei already exhibit the collective behaviour that reveals QCD substructure under extreme conditions, as initially seen with heavy-ion collisions. This has triggered widespread interest in the study of the strong force in the context of condensed matter physics, and understanding that the formation and evolution of this extreme phase of QCD matter is dominated by the properties of gluons at high density.

An electron–ion collider (EIC) will open up the secondaries to even detect particles with angles and rigidities near the main ion beams. To quickly separate both beams into their respective beam lines while providing the space and geometry required by the physics programme, both the BNL and JLab pre-conceptual designs incorporate large crossing angles of 20–50 mrad. This achieves a hermetic acceptance and also has the advantage of avoiding the introduction of separator dipoles in the detector vicinity that would generate huge amounts of synchrotron radiation. The detrimental effects of this crossing angle on the luminosity and beam dynamics would be compensated by a crab-correcting radio-frequency scheme, which has many synergies with the LHC high-luminosity upgrade (CERN Courier May 2018 p18).

Modern particle detector and readout systems will be at the heart of the EIC, driven by the demand for high precision on particle detection and identification of final-state particles. A multipurpose EIC detector needs excellent hadron–lepton–photon separation and characterisation, full acceptance, and to go beyond the requirements of most particle-physics detectors when it comes to identifying pions, kaons and protons. This means that different particle-identification technologies have to be integrated to cover a wide momentum range in the detector to cover particle momenta from a couple of 100 MeV to several tens of GeV. To address the demands on detector requirements, an active detector R&D programme is ongoing, with key technology developments including large, low-mass high-resolution tracking detectors and compact, high-resolution calorimetry and particle identification.

The way in which a nucleus or nucleon reveals itself in an experiment depends on the kinematic regime being probed. A dynamic structure of quarks and gluons is revealed when probing nucleons and nuclei at higher energies, or with higher resolutions. Here, the nucleus transforms from a few-body system with its structure dominated by the three valence quarks to a regime where it is increasingly dominated by gluons generated through gluon radiation, as discovered at the former HERA electron–proton collider at DESY. Eventually, the gluon density becomes so large that the gluon radiation is balanced by gluon recombination, leading to nonlinear features of the strong interaction. From the LHC and RHIC we learned that neutrons and protons bound inside nuclei already exhibit the collective behaviour that reveals QCD substructure under extreme conditions, as initially seen with heavy-ion collisions. This has triggered widespread interest in the study of the strong force in the context of condensed matter physics, and understanding that the formation and evolution of this extreme phase of QCD matter is dominated by the properties of gluons at high density.

The path ahead

A high-energy and high-luminosity electron–ion collider capable of a versatile range of beam energies, polarisations and ion species is the only tool to precisely image the quarks and gluons, and their interactions, and to explore the new QCD frontier of strong colour fields in nuclei — to understand how matter at its most fundamental state is the only tool to precisely image the quarks and gluons, and their interactions, and to explore the new QCD frontier of strong colour fields in nuclei — to understand how matter at its most fundamental state is the only tool to precisely image the quarks and gluons, and their interactions, and to explore the new QCD frontier of strong colour fields in nuclei — to understand how matter at its most fundamental state is the only tool to precisely image the quarks and gluons, and their interactions, and to explore the new QCD frontier of strong colour fields in nuclei — to understand how matter at its most fundamental state is the only tool to precisely image the quarks and gluons, and their interactions, and to explore the new QCD frontier of strong colour fields in nuclei — to understand how matter at its most fundamental state is the only tool to precisely image the quarks and gluons, and their interactions, and to explore the new QCD frontier of strong colour fields in nuclei — to understand how matter at its most fundamental state is the only tool to precisely image the quarks and gluons, and their interactions, and to explore the new QCD frontier of strong colour fields in nuclei — to understand how matter at its most fundamental state is the only tool to precisely image the quarks and gluons, and their interactions, and to explore the new QCD frontier of strong colour fields in nuclei — to understand how matter at its most fundamental state
Accelerators
R&D, engineering and design, and construction. The DOE Office of Nuclear Physics is also supporting increased efforts towards the most critical generic EIC-related accelerator research and design.

But the EIC is by no means a US-only facility (figure 2). A large international physics community, comprising more than 800 members from 150 institutions in 30 countries and six continents, is now energised and working on the scientific and technical challenges of the machine. An EIC users group (www.eicug.org) was formed in late 2015 and has held meetings at the University of California at Berkeley, Argonne National Laboratory, and Trieste, Italy, with the most recent taking place at the Catholic University of America in Washington, DC in July. The EIC user group meet- ings in Trieste and Washington included presentations of US and international funding agency perspectives, further endorsing the strong international interest in the EIC. Such a facility would have capabilities beyond all previous electron-scattering machines in the US, Europe and Asia, and would be the most sophisticated and challenging accelerator currently proposed for construction in the US.

Further reading
National Academies of Sciences, Engineering, and Medicine 2018

Dave Newbold from the University of Bristol has been appointed director of the particle physics department for the UK’s Science and Technology Facilities Council (STFC), based at the Rutherford Appleton Laboratory (RAL) in Oxfordshire. Previously head of particle physics at the University of Bristol, Newbold is a member of the CMS collaboration and currently leads the UK’s CMS upgrade programme. He is also trigger and data-acquisition coordinator for the international Deep Underground Neutrino Experiment based in the US. Succeeding Dave Wark of the University of Oxford, Newbold took up the new position at RAL in September. Funded and managed by the STFC, RAL supports the UK particle physics programme by providing capabilities that complement and go beyond what can be done in individual universities. The laboratory technicians working across a number of areas. It currently hosts two major research facilities – the ISIS neutron and muon source and the CERN–UK distributed computing grid, GridPP. Among his goals as director of the particle physics department, Newbold intends to focus on integrating RAL more closely with UK universities and to strengthen relations with CERN and other international laboratories. “RAL, particle physics has a world-class team, backed with all the facilities of the national lab,” he says. “With LHC upgrade construction now starting, we have an intense few years of activity coming up across the UK institutes – we’ll be supporting that, and developing plans for a number of new projects in particle physics. I’m looking forward to the challenge.”

Appointee
New director for particle physics at RAL

Dave Newbold took up his new role at Rutherford in September.

Friedrich Wilhelm Bessel award for Higgs phenomenology

Michael Spannowsky of Durham University research project with colleagues at a German institution. Spannowsky’s research has contributed to the design of novel reconstruction and analysis strategies to improve measurements of the top- and bottom-quark Yukawa couplings and the Higgs self-interaction. He will use his award to collaborate with colleagues at the University of Tübingen in southwest Germany on research into dark matter and Higgs phenomenology.

NSREC accolade for radiation paper

Federico Faccio from CERN has received the Outstanding Conference Paper Award for the 2017 IEEE Nuclear and Space Radiation Effects Conference (NSREC), as lead author of the paper titled “Influence of LDD spacers and H transport on the total ionising-dose response of 65 nm MOSFETs irradiated to ultra-high doses”. The prestigious award was presented at this year’s NSREC, which took place in Kona, Hawaii, on 16–20 July. The paper (doi:10.1109/TNS.2017.2760629), which summarises the work of a collaborative effort between CERN and the universities of Padova, Salento, Udine and Vanderbilt, marks an important contribution to the understanding of how radiation influences the behaviour of modern CMOS processes. Faccio leads a small team of experts at CERN studying radiation effects in microelectronics, for instance identifying commercially available processes for use in the extreme radiation environment of the LHC detectors.

Award
Friedrich Wilhelm Bessel award for Higgs phenomenology

Michael Spannowsky of Durham University.

NSREC accolade for radiation paper

Federico Faccio from CERN has received the Outstanding Conference Paper Award for the 2017 IEEE Nuclear and Space Radiation Effects Conference (NSREC), as lead author of the paper titled “Influence of LDD spacers and H transport on the total ionising-dose response of 65 nm MOSFETs irradiated to ultra-high doses”. The prestigious award was presented at this year’s NSREC, which took place in Kona, Hawaii, on 16–20 July. The paper (doi:10.1109/TNS.2017.2760629), which summarises the work of a collaborative effort between CERN and the universities of Padova, Salento, Udine and Vanderbilt, marks an important contribution to the understanding of how radiation influences the behaviour of modern CMOS processes. Faccio leads a small team of experts at CERN studying radiation effects in microelectronics, for instance identifying commercially available processes for use in the extreme radiation environment of the LHC detectors.

We are in the loop
Flow Monitoring by ELETTA.
Extreme reliability on your cooling systems.
Safety on critical applications.
Supplier for more than 40 years at CERN and other particle accelerators.

You know what you want to detect:
- X-rays
- Gamma-rays
- Neutrons
- Particles

We know how to build your detectors.
Swiss Physical Society presents annual awards

At its 2018 annual meeting, held at École Polytechnique Fédérale de Lausanne (EPFL) on 23–25 August, the Swiss Physical Society (SPS) recognised the achievements of four researchers working in the area of high-energy physics.

Theorist Lavinia Heisenberg, a junior fellow at ETH Zurich, was presented with the ARB General Physics Prize “for her pioneering and essential contributions to alternative theories of gravity”. Heisenberg studies the fundamental properties of field theories, their cosmological consequences and possible signatures, with the aim of comparing current general relativity with alternative theories of gravity.

The Charpak-Ritz Prize 2018, granted jointly by the SPS and the French Physical Society, was presented to Roland Horisberger of the Paul Scherrer Institute at the Journées de la Matière Condensée in Grenoble on 27 August for his extensive development of precision silicon vertex detectors. Horisberger made important contributions to the silicon microstrip detector for the DELPHI experiment at CERN’s Large Electron Positron Collider, the H1-central vertex detector at DESY, and the pixel detector for the CMS experiment at the Large Hadron Collider (LHC). He has also successfully transferred novel technologies, such as PILATUS pixel detectors, to the field of synchrotron science.

Accelerator physicist Claudia Tambasco of EPFL received the 2018 Swiss Institute of Particle Physics (CIPPS) Prize for PhD research that improved the understanding of the stability of proton beams in the LHC. In her thesis work she measured the Landau damping of the LHC beams, a process that reduces beam losses caused by interactions between the proton beam and the vacuum pipe. The results led to a proposal that increased the integrated luminosity, and have also been applied to future colliders such as the FCC.

Finally, Maurice Bourquin of the University of Geneva, who in 2001 was elected as the first and so far only Swiss president of the CERN Council, was made an honorary member of the SPS. Bourquin was recognised for his enormous scientific achievements in particle and astroparticle physics, his extraordinary commitment in science policy at CERN and at Swiss universities implementing the Bologna Reform, and also for his far-sighted commitment to the promotion of future thorium-based nuclear reactors.

MEETINGS

Particle interactions up to the highest energies

The 20th International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2018) was held in Nagoya, Japan, on 21–25 May. More than 120 attendees from 19 countries discussed various aspects of hadronic interactions at the intersection between high-energy cosmic-ray physics and classical accelerator-based particle physics. The 65 contributions reflected the large diversity and interdisciplinary character of this field, which is of increasing importance to the aspirations of the International Union of Pure and Applied Physics.

In his opening address, Sunil Gupta paid a tribute to Oscar Saavedra, one of the leading scientists and founders of the ISVHECRI series, who passed away in 2018. Following the long tradition of this symposium series, the main topic was the discussion of particle physics at relevant to extensive air showers, secondary cosmic-ray production, and hadronic multi-particle production at accelerators. This time, the symposium expanded its coverage of multi-messenger astrophysics, especially to neutrino and gamma-ray astrophysics. Many talks were invited from the Pierre Auger Observatory and Telescope Array, as well as from IceCube, Super-Kamiokande, CTA and HAWC, and space-borne experiments such as AMS-02, Fermi and CALET.

Participants discussed many open questions in high-energy astroparticle physics related to our understanding of cosmic-ray interactions from the multi-messenger point of view; for example, the relevance of production and propagation of positrons or antimatter for indirect dark-matter searches, or of atmospheric-neutrino production for neutrino oscillations or neutrino astronomy.

Higgs hunters meet up in Orsay and Paris

The 9th Higgs Hunting workshop took place in Orsay and Paris on 22–25 July, attracting 120 physicists for lively discussions about recent results in the Higgs sector. The ATLAS and CMS collaborations presented results based on up to 80 fb⁻¹ of data recorded at an energy of 13 TeV, which corresponds to almost all the data that has been taken so far at the LHC. The statistical uncertainty on some measured properties of the Higgs boson, such as the production cross-section, is now almost three times smaller with the 13 TeV data than it was after LHC Run 1 at energies of 7 and 8 TeV, and in several cases the overall uncertainty is reaching a point at which the systematic uncertainty becomes dominant.

Several searches for phenomena beyond the Standard Model, in particular for additional Higgs bosons, were presented. No significant excess above background expectations was reported. The historical talk was given by Lynn Evans, who served as the project leader of the LHC. The last day of the event was devoted to the physics at the LHC and a study of multi-particle production at a future circular collider. The cosmic-ray community is very enthusiastic about a future proton–oxygen run since, even with a short run of 30 million events, charged particle and pion spectra could be measured to an accuracy of 10% – a five-fold improvement over current model uncertainties that would bring us a crucial step closer to unveiling the cosmic accelerators of the highest energy particles in the universe.

The next ISVHECRI will be held in June 2020 at Ooty, the location of the GRAPE-5 air-shower experiment in India. ● Patricia Bon, Nagoya University, and Ralph Engel (KIT, Karlsruhe).
Göttingen hosts HASCO summer school

This year’s Hadron Collider Physics Summer School (HASCO 2018) took place on 22–27 July in Göttingen, Germany, marking the seventh consecutive year that this dynamic and international school, primarily aimed at master’s students, has been offered. This year, 40 undergraduate students from 18 different institutes in 12 countries came together for a week to learn about hadron-collider physics. The nine lecturers also came from a variety of institutes throughout the world. The students learnt about the foundations of quantum field theory and hadron-collider physics, particularly in the context the Large Hadron Collider (LHC).

The HASCO school, numerous research topics are discussed, among them quantum chromodynamics, jet physics, top-quark physics and searches for supersymmetry or exotic models and particles. The focus was on the physics of the Higgs boson and the new opportunities that come with the high-statistics data sample being recorded during the LHC’s 13 TeV run. Almost all participating students passed the written examination at the end of the school and received three European Credit Transfer System points, for which they can obtain course credits at their home universities. — Stan Laz and Arnold Quadt, University of Göttingen.

Research infrastructures event brings particle physics into focus

The 4th International Conference on Research Infrastructures (ICRI 2018), held in Vienna on 12–14 September, offered a forum for discussions about international cooperation for research infrastructures (RI), with participants from more than 50 countries taking part. During an intense programme, participants drafted a roadmap to inform Europe’s policy and investment in RIs, with CERN’s director for international relations, CharlotteWARiakauvle, offering a glimpse of the organisation’s plans and ongoing R&D for future colliders and detectors. The new ESFRI 2018 roadmap was presented, including a “landmark” portfolio of 37 long-term engagements in all fields of science and 18 projects.

During the event, a new exhibition “CODE of the Universe” also made its first international stop. The exhibition (pictured) addresses open questions in physics and the role of particle accelerators both in fundamental research and as concrete applications. It is organised by CERN, the Institute of High Energy Physics (HEPHY), the Natural History Museum of Vienna and publisher Edition Lammethuber. A public event was hosted on the evening of the 13th.

OUTREACH

CERN is guest of honour at Swiss National Day

On 1 August, CERN was the City of Geneva’s guest of honour at the Swiss National Day celebrations. Many thousands of visitors had the opportunity to learn about the laboratory’s activities via workshops, virtual-reality tours, physics demonstrations, educational games and a new “Particle Identities” quiz. Participants also visited the CERN Data Centre via virtual-reality headsets.

OUTREACH

Packed house for CHEP public event

A large and enthusiastic crowd attended “Universal Science,” a public event preceding the International Conference on High Energy and Nuclear Physics (CHEP), in Sofia, Bulgaria, on 8 July. With an agenda of research, computing and diversity, tickets for the event sold out well before deadline, and overflow had to be accommodated through online participation.

Such an outreach event is not typical for CHEP, a conference that focuses on specialised topics such as distributed computing, event reconstruction, data handling and virtualisation. This year’s organising committee, however, saw it as an opportunity to reach out to the local public and to foster open discussion on the impact of particle-physics research on society. Similar events have grown in popularity at other major conferences, such as ICHEP, EPS and LHCP, and the particle-physics community has become increasingly engaged in public outreach.

Hands-on exhibits, including interactive virtual-reality displays, entertained and informed the audience. Andreas Salzburger, physicist on the ATLAS experiment, kicked off the evening with a short talk on the motivation for and history of particle physics. This was followed by talks on diversity by Lee Bitsoi of Stony Brook University and on the growth of distributed computing by CERN computer engineer Hannah Short.

Talks were followed by a panel discussion generating a barrage of questions from both the local audience and those connecting via Facebook Live. The event was organised by CHEP Ratio, IPPG, Brookhaven National Lab, ATLAS and Belle II.

Outreach

Joachim Kupsch 1939–2018

Eminent mathematical physicist Joachim Kupsch passed away in Heidelberg, Germany, on 19 June aged 78. He made wide-ranging contributions to scattering theory and elementary particle physics, quantum field theory and infinite-dimensional analysis, Fermionic integration and supersymmetry, noncommutative systems and decoherence. He also had many collaborators, most of them from Germany. His work, always characterized by mathematical rigor and scholarly exposition, includes three books. The last – Quantum Fields and Processes: A combinatorial approach (Cambridge University Press) came out in March 2018. Joachim received his diploma in physics from the University of Kiel in 1966 and embarked on a postdoc at the University of Bonn. His interest in analytic scattering theory during his tenure as a CERN fellow from 1968 to 1970, where he was influenced deeply by André Martin. After postdoctoral work and habilitation at the University of Heidelberg (1970–1973), Joachim secured a permanent position at the University of Kaiserslautern from 1973 to 2005 and then became an emeritus professor. During 1985–1986 he visited CERN many times, and until 2008 had guest professor positions in China (Beijing and Shanghai), Portugal (Lisbon) and India (Mumbai, Chennai, Pune and Delhi).

One of the most important results of the analytic S-matrix theory is the Froissart–Martin bound, which sets an upper limit fundamental analyticity constraints? In 1968, David Atkinson pioneered the theoretical construction of pion–pion scattering amplitudes obeying Mandelstam representation, crossing symmetry and elastic unitarity in the elastic region, and the inelastic unitarity inequalities in the inelastic region. Atkinson obtained an amplitude with a total cross section decreasing at high energies. Joachim joined this research with full vigour. After persevering for nearly 12 years, and after many intermediate results, he constructed a pion–pion amplitude saturating the Froissart–Martin bound, and obeying Mandelstam analyticity, crossing symmetry and inelastic unitarity in the inelastic region. The result is significant because the bound appears to be saturated at the LHC. An essential ingredient in his proof is the Auberson–Kinoshita–Martin theorem. Perhaps Joachim’s efforts in 1970 did not succeed because this theorem was not yet published. The main constraint not yet incorporated in Joachim’s 1986 construction is elastic unitarity in the elastic region. Joachim died in the arms of Sigrid Kupsch Losereit, his beloved wife of 45 years. His friends knew him to be a warm, soft spoken, affable and kind person; he will be sorely missed for both his academic and human qualities.

Obituaries

Joachim Kupsch made wide-ranging contributions to scattering theory.

(outofaconstanttimes).formulamathcaldeformathcallogarithmofenergy)onthetotalexsectionofatwo-particle scatteringprocess.Wasitfirst derived by Marcel Froissart in 1961 assuming Mandelstam representation with a finite number of states? It was rigorously proved by Martin in 1966 using only unitarity and analyticity properties following from axiomatic field theory, in particular the analyticity of the absorptive part in the Lehmann–Martin ellipse. The question was whether it was possible to construct scattering amplitudes that saturate this bound and obey...
Bert Diddens 1928–2018

On 28 August, following a short period of sickness, our friend and colleague Bert Diddens passed away at the respectable age of 90. He was one of the veterans in CERN’s proud history of physicists and the first scientific director of the Dutch high-energy physics institute Nikhef. Bert was born in the province of Groningen, in the north of the Netherlands. It is a region where people tend to be straightforward and down-to-earth, and Bert fitted that description very well, even up to his last days when telling his family that he didn’t want flowers at his funeral, as the money could be better spent on science. But behind this demure façade was a gentle and sensitive person, loyal to his friends and colleagues. He remained interested in the sciences throughout his life, regularly visiting the Nikhef library to stay informed. This was illustrated by his always-to-the-point comments when the jury consisting of him and all other former Nikhef directors deliberated on what was the best PhD thesis of the past year.

Bert studied physics at the University of Groningen, where he graduated in 1949. He then joined Jim Allison at Imperial College to study for his PhD. The experimental work that led to it, however, was done in Leiden, where he studied gamma radiation from orientated cobalt and manganese nucelai using low-temperature techniques. After his PhD he joined the small group of physicists at the University of Liverpool in the UK, which led to the formation of the department of high-energy physics at the University of Liverpool which was to become a high-energy physics institute.

In 1963 with Giuseppe Cocconi and Alan Picker, he formed a group to study proton–proton scattering at the Proton Synchrotron. The experiment revealed that the slope of the diffraction peak shrinks with increasing energy. A few years later, with Alan and Jim, he initiated an experiment at Serpukhov to study particle production and the total hadron–hadron cross section at the then-highest proton energy of 70 GeV. In 1970, with CERN’s Intersecting Storage Rings being constructed, Bert with his CERN colleagues joined Ugo Amaldi and Giorgio Matteusi of the Rome-SSS group to design an experiment to study small-angle proton–proton scattering, introducing a novel technique that later became known as “Raman Pots”. Just before he was asked to be CERN’s first scientific director, Bert turned to neutrino physics when his CERN team joined Klaus Winter in the CHARM (CERN–Heidelberg–Amsterdam–Moscow) experiment.

As a director at Nikhef he was responsible for shaping its first experimental programme, of which CHARM became a valuable part. As Nikhef did not yet have its own building, Bert had the responsibility to make sure that the design and construction of a new laboratory fitted the ambitions of the Dutch high-energy physics community. The success of today’s Nikhef is to a large extent determined by these first developments. When Nikhef had to decide which experiments to join at the Large Electron Positron collider (LEP), it was obvious that DELPHI would be one of them, extending into the LEP-era the amicable bonds with his former Collider colleagues. He actively participated in the experiment after its directorship came to an end in 1985 and was the thesis supervisor for many PhD students of both DELPHI and CHARM.

We will all remember Bert Diddens with the greatest respect as a wonderful person, an excellent physicist and a key figure in establishing Nikhef as an important player in the international community of high-energy physics institutes. His friends and colleagues.

Francis Farley 1920–2018

Francis Farley, who played a pivotal role in experiments to map out the anomalous magnetic moment of the muon, passed away on 16 July at his home in the south of France at the age of 97.

The son of a British Army engineering officer, Francis was born in India and educated in England. Before he could complete his education, he transferred to military research, using his knowledge of electronics and demonstrating his abilities in innovation. Following a secondment to Chalk River Laboratories in Ontario, Canada, he resumed his formal education with a PhD in 1950 from the University of Cambridge, before starting his academic career at Auckland University in New Zealand. During his time at Auckland, he studied cosmic rays; represented New Zealand at a United Nations conference on cosmic energy for peaceful purposes; measured neutron yields from plutonium fission (while on secondment to Harwell, UK); and wrote his first book Elements of Pulse Counting.

In 1957 Francis joined CERN, where he started his long and remarkable journey on experiments to measure the anomalous magnetic moment of the muon (muon g-2). This endeavour would span nearly 50 years and 22 major experiments, three at CERN and one at Brookhaven National Laboratory (BNL) in the US. The initial result from the first experiment had an accuracy of just 2%, whereas the final result from the last experiment reached 0.3 parts per million. Each experiment was at the time seen as a tour de force, and the measurement added an important restraint on the imagination of theorists. It was also striking that each new measurement was within the error limits of the previous one.

Many other people, including various of CERN’s renowned physicists, contributed to this long effort, but Francis is the sole common author, making seminal contributions to all of the experiments. The first experiment was performed on the initiative of Leon Lederman, a CERN visitor at the time, at CERN’s first accelerator, the 600 MeV Synchrocyclotron. The other members of the noteworthly team on this experiment were Georges Charpak, Richard Garwin, Theo Moflin and Antonio Zichichi. By the time of the second experiment, CERN’s Proton Synchrotron was operating and the second and third experiments were performed there – taking advantage of the higher-energy muons that the accelerator provided. Francis alone continued onto these experiments, but among others joining the experiments was Emilio Picasso. Later Francis, again alone, continued as a member of the most recently completed g-2 experiment at BNL.

In the spirit of always looking for major improvements, it is noteworthy that in his review paper “The 47 years of muon g-2”, written with Yannis Semertzidis, a totally new structure for a muon storage ring is suggested, should greater accuracy be justified for a future experiment.

The first experiment showed that the muon was a “heavy electron”, the second validated electron loops in the photon propagator, and the third showed the contribution from virtual hadron loops. Each measurement has spurred theoretical physicists to include more and more effects in their calculations of the muon magnetic moment: higher-order corrections in quantum electrodynamics, first-order and then higher-order hadronic and electroweak contributions. These advances in the theoretical prediction in turn justified the next generation of experiments, to give an even more stringent test of theory. The muon storage rings also allowed tests of relativistic time dilation, with the third experiment achieving an accuracy of 0.1% for a “muon clock” moving at a speed of 0.99994 and the most accurate test of the “twin paradox”.

In 1970, when he was again based in the UK and Dean of The Royal Military College of Science, Francis also started to do research in wave energy. This work continued through his retirement, in parallel to the work on g-2. In this area too, he established a formidable reputation, with many papers written and patents produced over a period of 40 years. Indeed, his most recent paper on wave energy was published just a few days after his death.

Early in his retirement, he designed the beam transport system for a proton-therapy system at a cancer hospital, which was still being used more than 20 years later. He also published a special-relativistic single-parameter analysis of data on redshifts of type Ia supernovae that showed no evidence for acceleration or deceleration effects. Even more recently, he worked on other tests of relativistic basis on analysis of data from the muon g-2 experiments.

He received many honours, including election to a fellow of the Royal Society and the Hughes Medal for his work on CERN g-2. Outside of work, Francis had a passion for flying gliders, was a keen skier and windsurfer, a regular swimmer, and liked large American cars. All of these behitted a hardworking but somewhat playboy image, that years later formed much of the basis of his novel Catalysed Fusion.

Francis was a wonderful source of new ideas and insights, with a prodigious output. He was always enthusiastic, and he could be charming but forceful, and a stickler for precision. He will be much missed. His friends and colleagues.
is, in short, a living, breathing link between mainly in French-speaking Switzerland. He Foundation, a charitable organisation that Advisory Council. For good measure, he of astronomy at the University of Geneva, author is not only an emeritus professor beginning to appear, and we can start to basic science to technology and society are perhaps even more remarkable Antikythera in the author's discussion of time, though the antiquity to modern times across a wide range of disciplines. Astronomy helped our ancestors to master time, plant crops at the right moment, and navigate their way across wide oceans. There's humour in the form of speculation about the powers of persuasion of those who convinced the authorities of the day to build the great stone circles that dot the ancient world, allowing people to take time down from the heavens. These were perhaps the Large Hadron Collider's of their time, and, in Courvoisier's view, probably took up a considerably larger fraction of ancient GDP gross domestic product. But here too, the perhaps even more remarkable Antikythera monster is wrong about the world.

By the time we reach chapter three, the beginnings of a virtuous circle linking basic science, education, and society are beginning to appear, and we can start to guess where Courvoisier is taking us. The author is not only an enthralled student of astronomy at the University of Geneva, but also a former president of the Swiss Academy of Sciences and current president of EASAC, the European Academies Science Advisory Council. For good measure, he is also president of the H Dudley Wright Foundation, a charitable organisation that supports scientific and humanities professor, mainly in French-speaking Switzerland. He is, in short, a living, breathing link between science and society. In chapter four, we enjoy the cultural benefits of science and the pleasure of knowledge for its own sake. We have a glimpse of what in Swiss German is delightedly referred to as Aha Erlebnis – that eureka moment when ideas just fall into place. It reminded me of the passage in another curious book, Kary Mullis’s Dancing Naked in the Mindfield, in which Mullis describes the Aha Erlebnis that led him to receive the Nobel Prize in Chemistry in 1993. It apparently came to him so strongly out of the blue on a night drive along a California freeway that he had to pull off the road and write it down. Einstein’s famous 1% inspiration may be rare, but what a wonderful thing it is when it happens.

Chapter five takes us back to the call to action for scientists to take up the role that they have a responsibility to play in the field demanding of them in society. “We still need to generate the culture required to... bring existing knowledge to places where it can and must contribute to actions fashioning the world.” Courvoisier examines the gulf between the rational world of science and the rather different world of policy – a gulf once memorably described by Lew Kowarski in his description of the alliance between scientists and diplomats that led to the creation of CERN. He delighted to see the diplomat grapple with the difference between a cyclotron and a plutonium atom.” He said. “We had to compensate for being unable immediately to spell out how to sell a subcommittee from a working party, and how... in the art of persuasion... to address people by their titles rather than their names. Each side began to understand the other’s language. A mutual respect grew in place of the traditional mistrust between egg-headed pedants and pettifogging bureaucrats.” CERN is the resulting evidence for the good that comes when science and policy come together.

CERN is the resulting evidence for the good that comes when science and policy come together.

required to... bring existing knowledge to places where it can and must contribute to actions fashioning the world.” Courvoisier examines the gulf between the rational world of science and the rather different world of policy – a gulf once memorably described by Lew Kowarski in his description of the alliance between scientists and diplomats that led to the creation of CERN. He delighted to see the diplomat grapple with the difference between a cyclotron and a plutonium atom.” He said. “We had to compensate for being unable immediately to spell out how to sell a subcommittee from a working party, and how... in the art of persuasion... to address people by their titles rather than their names. Each side began to understand the other’s language. A mutual respect grew in place of the traditional mistrust between egg-headed pedants and pettifogging bureaucrats.” CERN is the resulting evidence for the good that comes when science and policy come together.

Chapter five takes us back to the call to action for scientists to take up the role that they have a responsibility to play in the field demanding of them in society. “We still need to generate the culture required to... bring existing knowledge to places where it can and must contribute to actions fashioning the world.” Courvoisier examines the gulf between the rational world of science and the rather different world of policy – a gulf once memorably described by Lew Kowarski in his description of the alliance between scientists and diplomats that led to the creation of CERN. He delighted to see the diplomat grapple with the difference between a cyclotron and a plutonium atom.” He said. “We had to compensate for being unable immediately to spell out how to sell a subcommittee from a working party, and how... in the art of persuasion... to address people by their titles rather than their names. Each side began to understand the other’s language. A mutual respect grew in place of the traditional mistrust between egg-headed pedants and pettifogging bureaucrats.” CERN is the resulting evidence for the good that comes when science and policy come together.

The betting press of Harvard University Press When Nobel laureates offer their point of view, people generally are curious to listen. Self-described rationalist, realist, reductionist and devoutly secular, Steven Weinberg has published a new book reflecting on current affairs in science and beyond. In Third Thoughts, he addresses themes that are of interest to scientists, philosophers, and society. This book is oriented at limiting calculations and abstraction in favour of practical applications. Applets, accessible on the website of the book, are released for the first time. The essays span subjects from quantum mechanics to climate change, from broken symmetry to cemeteries in Texas, and are passionately interspersed with his personal life stories. Like his previous collections, Weinberg tackles big topics that are dear to him: the history of science, science spending, and the big questions about the future of science and humanity. The author defines himself as an enthusiastic amateur in the history of science, albeit a “Whig interpreter” (meaning that he evaluates past scientific discoveries by comparing them to the current advancements – a method that irks some historians). Beyond that, his taste for controversy encourages him to cogitate over long debates, Hawking’s views, the weaknesses of quantum mechanics and the US government’s financing choices, among others.

There were essays on the power of free will, along with the current attempts, the benefits of a holistic and practical understanding of science, and a call for a new generation of scientists to take on the challenges of the future. The essays vary in difficulty, and some concepts and views are repeated in several essays, such as the need for big scientific projects, and the need for big questions about the future of science and humanity. “What is the world made of?” needed to wait for chemistry advances at the end of the 18th century. “What is the structure of the electron?” needed to wait for quantum mechanics. While “What is an elementary particle?” is still waiting for an answer. The essays vary in difficulty, and some concepts and views are repeated in several essays, such as the need for big scientific projects, and the need for big questions about the future of science and humanity.

The book starts off with classical electromagnetism and shows its limitations when it comes to describing the phenomena of quantum mechanics. The advanced concepts are then gradually introduced, from wave–particle duality to the mathematics of quantum mechanics. The book is described as the state of a particle and to predict in principle the quantum well and tunnelling through a potential barrier are explained, followed by a few applications, including the use of quantum computers. The essays are written with clarity, and the author has a knack for explaining complex concepts in a way that is accessible to readers with no background knowledge in particle physics, a general understanding of the Standard Model would help with grasping the content of some of the paragraphs. Having said that, the general reader can still follow the big picture and logically argued thoughts.

Several essays talk about CERN. More specifically, the “The Higgs, and beyond” essay was written before the announcement of the discovery of the Higgs boson in 2012. In this essay, he describes the need for big scientific projects, and describes both how cosmology and particle physics are developing and how the Standard Model would help with grasping the content of some of the paragraphs. Having said that, the general reader can still follow the big picture and logically argued thoughts.

Several essays talk about CERN. More specifically, the “The Higgs, and beyond” essay was written before the announcement of the discovery of the Higgs boson in 2012. In this essay, he describes the need for big scientific projects, and describes both how cosmology and particle physics are developing and how the Standard Model would help with grasping the content of some of the paragraphs. Having said that, the general reader can still follow the big picture and logically argued thoughts.

Several essays talk about CERN. More specifically, the “The Higgs, and beyond” essay was written before the announcement of the discovery of the Higgs boson in 2012. In this essay, he describes the need for big scientific projects, and describes both how cosmology and particle physics are developing and how the Standard Model would help with grasping the content of some of the paragraphs. Having said that, the general reader can still follow the big picture and logically argued thoughts.
Bookshelf

Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning

By Bob Coecke and Aleks Kissinger

Cambridge University Press

“This book is about telling the story of quantum theory entirely in terms of pictures,” declare the authors of this unusual book, in which quantum processes are explained using diagrams and an innovative method for presenting complex theories. The book employs a unique formalism developed by the authors, which allows a more intuitive understanding of quantum features and eliminates complex calculations. As a result, knowledge of advanced mathematics is not required. The entirely diagrammatic presentation of quantum theory proposed in this volume is the result of 10 years of work and research carried out by the authors and their collaborators, unifying classical techniques in linear algebra and Hilbert spaces with cutting-edge developments in quantum computation and foundational QM.

An informal and entertaining style is adopted, which makes this book easily approachable by students at their first encounter with quantum theory. That said, it will probably appeal more to PhD students and researchers who are already familiar with the subject and are interested in looking at a different treatment of this matter. The text is also accompanied by a rich set of exercises.

NanoElectronics: Materials, Devices, Applications (2 volumes)

By R Puers, L Baldi, M Van de Voorde and S.E van Niooem (editors)

Wiley–VCH

This book aims to provide an overview of both present and emerging nano-electronics devices, focusing on their numerous applications such as memories, logic circuits, power devices and sensors.

It is one unit (in two volumes) of a complete series of books that are dedicated to nanoscience and nanotechnology, and their penetration in many different fields, ranging from human health, agriculture and food science, to energy production, environmental protection and metrology.

After an introduction about the semiconductor industry and its development, different kinds of devices are discussed. Specific chapters are also dedicated to new materials, device-characterisation techniques, smart manufacturing and advanced circuit design.

Then, the many applications are covered, which also shows the emerging trends and economic factors influencing the progress of the nanoelectronics industry. Since nano-electronics is nowadays fundamental for any science and technology that requires communication and information processing, this book can be of interest to electronic engineers and applied physicists working with sensors and data-processing systems.

Recruitment

The Faculty of Physics of Bielefeld University invites applications for a Professorship in Theoretical Physics (W2 with tenure track W3)

We are looking for an outstanding scientist with international reputation, who strengthens the focal research activities in the theory of fundamental interactions. Possible research directions include, but are not limited to, non-perturbative physics of the Standard Model and beyond, using approaches such as lattice field theory or relativistic hydrodynamics. Potential applications include relativistic heavy ion physics, particle physics, dark matter, compact stars, or gravitational waves.

The new professor is expected to participate and take a leading role in the Collaborative Research Centre “Strong-interaction matter under extreme conditions” (CRC-TR21). Participation in teaching the curriculum in Theoretical Physics both at the undergraduate and graduate level as well as service in faculty and university bodies are further important constituents of the professorship.

Applications from suitably qualified handicapped or severely handicapped candidates are explicitly welcome.

Bielefeld University has received a number of awards for its achievements in the area of equal opportunity. Applications are handled according to the provisions of the State Equal Opportunity Statute.

Stay connected: Rezest CONNECTÉS

http://alumni.cern

The High-Energy Network, Le Réseau des hautes énergies

D-Pace

Volume Cusp Ion Sources, DC or Pulsed

Filament

$H^+: 15$ mA DC, 30 keV, $\epsilon_{rms} < 1$ mm·mrad

$D^-: 5$ mA DC, 30 keV, $\epsilon_{rms} < 1.5$ mm·mrad

CR: Under Development

RF

$H^+: 7.5$ mA DC, 30 keV, $\epsilon_{rms} < 1$ mm·mrad

$D^-: 3$ mA DC, 30 keV, $\epsilon_{rms} < 1.5$ mm·mrad

CR: Under Development

Turnkey System include the ion source, software and controls, power supplies, vacuum pumps and instrumentation, high-voltage subsystems, and access control. These are non-cesiated ion sources.

Can you imagine?

Taking part in the largest scientific experiment in the world....

To advance our understanding of our universe, CERN needs more than physicists and engineers - if you’re a student, a graduate, just starting your career or an experienced professional, whatever your field of expertise, you too could be a part of this incredible journey.

Check out the diverse opportunities CERN has to offer on: http://careers.cern

Take part and apply now!

Universität Bielefeld

The Faculty of Physics of Bielefeld University invites applications for a **Professorship in Theoretical Physics (W2 with tenure track W3)**

We are looking for an outstanding scientist with international reputation, who strengthens the focal research activities in the theory of fundamental interactions. Possible research directions include, but are not limited to, non-perturbative physics of the Standard Model and beyond, using approaches such as lattice field theory or relativistic hydrodynamics. Potential applications include relativistic heavy ion physics, particle physics, dark matter, compact stars, or gravitational waves.

The new professor is expected to participate and take a leading role in the Collaborative Research Centre “Strong-interaction matter under extreme conditions” (CRC-TR21). Participation in teaching the curriculum in Theoretical Physics both at the undergraduate and graduate level as well as service in faculty and university bodies are further important constituents of the professorship.

Applications from suitably qualified handicapped or severely handicapped candidates are explicitly welcome.

Bielefeld University has received a number of awards for its achievements in the area of equal opportunity and has been acknowledged as a family-friendly university. The university welcomes applications from women. This is particularly true with regard to academic positions. Applications are handled according to the provisions of the State Equal Opportunity Statute.

Turnkey Systems include the ion source, software and controls, power supplies, vacuum pumps and instrumentation, high-voltage subsystems, and access control. These are non-cesiated ion sources.

D-Pace

Volume Cusp Ion Sources, DC or Pulsed

Filament

$H^+: 15$ mA DC, 30 keV, $\epsilon_{rms} < 1$ mm·mrad

$D^-: 5$ mA DC, 30 keV, $\epsilon_{rms} < 1.5$ mm·mrad

CR: Under Development

RF

$H^+: 7.5$ mA DC, 30 keV, $\epsilon_{rms} < 1$ mm·mrad

$D^-: 3$ mA DC, 30 keV, $\epsilon_{rms} < 1.5$ mm·mrad

CR: Under Development

Turnkey System include the ion source, software and controls, power supplies, vacuum pumps and instrumentation, high-voltage subsystems, and access control. These are non-cesiated ion sources.
ACCELERATOR OPERATION.

DESY, Hamburg location, is seeking: Postdoctoral Scientist (f/m/diverse) accelerator physics

DESY

DESY is one of the world’s leading research centres for photon science, particle and astroparticle physics as well as accelerator physics.

The European XFEL is the world leading hard x-ray free electron laser instal-...
The Laboratory for High Energy Physics (LHEP) and Albert Einstein Center for Fundamental Physics (AEC) at the University of Bern invites applications for one Postdoctoral and one PhD Position in medical applications of Particle Physics.

The two positions will be in the framework of our multi-disciplinary activities on novel radioisotopes for theranostics. We aim at producing Positron Emission Tomography (PET) isotopes by proton irradiation and alpha/beta emitters for therapy by photonuclear reactions. Most of the investigations will be performed at the Bern medical cyclotron laboratory. Thanks to its characteristic beam transport line, our group is currently developing new particle accelerator and detector methodologies for medical and other applications. Photonuclear reactions will be studied using electron accelerators.

The successful Postdoctoral candidate is expected to play a leading role in our scientific activities, in particular in the development of targets and irradiation methodologies. This will involve hardware work, data analysis and computer simulations. Applicants must have a PhD in physics or engineering and an excellent knowledge in the field of nuclear and particle physics applied to medicine. Experience with particle accelerators and detectors, targets, radiation protection and computer simulation codes will be highly considered in the selection procedure. The initial duration of the contract is for two years, extendable.

The successful PhD candidate is expected to play an active role in our scientific activities, which will involve both hardware work and data analysis. He/She must have a Master degree (or equivalent) in physics and good knowledge in the field of nuclear and particle physics applied to medicine. Experience with radiation physics, hardware, data analysis as well as knowledge of programming will be positively considered in the selection procedure. The position has a duration of up to 4 years.

Applications will be reviewed starting September 15th 2018 and accepted until the positions are filled.

Interested candidates for these roles are requested to send by email a letter of application, CV, list of publications and the names and addresses of three references (no letters, these will be requested at a later stage) to:

PD Dr. Saverio Braccini
Laboratorium für Hochenergiephysik
Universität Bern
Sidlerstrasse 5
3012 Bern (Switzerland)
Saverio.Braccini@lhep.unibe.ch
Further contacts with China

In the summer of 1973 a delegation of physicists from the People’s Republic of China, headed by Professor Chang Wen-Yu, made an extensive tour of high-energy physics laboratories in the USA, concluding with a week’s visit to CERN. In September 1975 there was a return visit by W.K. Jentschke (Director General of Laboratory I), G. Charpak, L. Van Hove and F. Weiskopf from CERN. The invitation for this visit proved to be much more than a reciprocal hospitality. Discussions were wide-ranging and thorough, carrying contacts between the scientific communities a stage further.

The tour of the CERN group centred on Peking and Shanghai. The visitors saw work on controlled thermonuclear fusion at the Institute of Physics at Peking (involving laser technology and a mini-Tokomak), on computers at the University of Peking, on lasers, thin films and integrated circuits at Tsing Hua University, on reactor technology at the Institute of Atomic Energy in Peking, on nuclear physics involving the use of a cyclotron (including isotope production) at the Institute of Atomic Energy Shanghai, …

Some very fine work was seen in instrumentation. This included integrated circuits, many electronic instruments, and multiwire chambers (a follow-up from a chamber passed by Charpak to the Chinese delegation in 1973).

Despite their achievements, the hosts insisted that China is a “developing” country in need of scientific and technical input from “developed” countries. However, they also insist that it must be the Chinese people themselves that do the work and apply the knowledge.

The highlight of the tour was a meeting with Wu Lein-Fu, Vice-Chairman of the Standing Committee of the National People’s Congress. He said that China wishes to see contacts and exchanges with high energy physicists extended, particularly of this country in need of scientific and technical input. Wu Lein-Fu, Vice-Chairman of the Standing Committee of the National People’s Congress, said that China wishes to see contacts and exchanges with high energy physicists extended, particularly of this country in need of scientific and technical input. Wu Lein-Fu, Vice-Chairman of the Standing Committee of the National People’s Congress, said that China wishes to see contacts and exchanges with high energy physicists extended, particularly of this country in need of scientific and technical input.

Concerning the exchange of people, we can finish with a typical Chinese proverb quoted by Wu Lein-fu – “One eye is better than a hundred ears”.

Compiler’s note

Whether or not China now considers itself to be developed or developing, the wishes expressed by Vice-Chairman Wu have already been amply fulfilled. By 2017, CERN had 12,236 users, 4,322 coming from non-member states. Of these, 4,456 were from China, behind the US with 11,432 and Russia with 10,958. Between the years 2013–2017, the participation of the US and Russia in CERN’s programmes and projects increased by 21% and 14% respectively, while that of China increased by 78%.

Looking to the future, China has recently completed a conceptual design report for a 100 km-circumference ring, initially to house a circular electron–positron collider, CEPC, and later a super proton–antiproton collider, SP2C, (CERN Courier June 2018 p27). To be built in China, this is foreseen as a facility for worldwide collaboration.
CAEN, your highway to the Silicon Photomultiplier Land

SiliconPM Valley
Small & Medium Systems
Large Experiments
Educational

SiPM Read-Out & Power Supplies
OPEN

Cosmic Rays Physics
HEP Calorimetry
Medical Imaging-PET
Photonics
Beta Spectroscopy
Radioactivity Monitoring
Educational Labs

Explore our newest SiPM Tools!

www.caen.it
Small details... Great differences